IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2582-d360338.html
   My bibliography  Save this article

Centralized-Decentralized Control for Regenerative Braking Energy Utilization and Power Quality Improvement in Modified AC-Fed Railways

Author

Listed:
  • Qiwei Lu

    (School of Mechanical Electronic & Information Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

  • Zhixuan Gao

    (School of Mechanical Electronic & Information Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

  • Bangbang He

    (School of Mechanical Electronic & Information Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

  • Cheng Che

    (School of Mechanical Electronic & Information Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

  • Cong Wang

    (School of Mechanical Electronic & Information Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China)

Abstract

This paper proposes a centralized-decentralized control strategy for regenerative braking energy utilization and power quality improvement in the modified AC-fed railway system with energy-storage-based smart electrical infrastructure. The proposal of a centralized-decentralized control strategy can enhance the ability to withstand and rapidly recover from disruptions, thus providing further guarantees for safe and reliable operation and energy conservation for railway systems. First of all, the description and control strategy of the modified railway system are outlined, and then the control principles and implementation process of the centralized control and decentralized control strategies are given. Moreover, a method of load power detection and regulated power reference calculation is proposed. Finally, the effectiveness of the proposed strategy is verified in a case of a modified railway system consisting of four traction substations and eight power supply sections. The results demonstrate that regenerative braking energy can be efficiently utilized in railways and that power quality can be improved using the proposed centralized-decentralized control strategy.

Suggested Citation

  • Qiwei Lu & Zhixuan Gao & Bangbang He & Cheng Che & Cong Wang, 2020. "Centralized-Decentralized Control for Regenerative Braking Energy Utilization and Power Quality Improvement in Modified AC-Fed Railways," Energies, MDPI, vol. 13(10), pages 1-31, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2582-:d:360338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhixuan Gao & Qiwei Lu & Cong Wang & Junqing Fu & Bangbang He, 2019. "Energy-Storage-Based Smart Electrical Infrastructure and Regenerative Braking Energy Management in AC-Fed Railways with Neutral Zones," Energies, MDPI, vol. 12(21), pages 1-24, October.
    2. Qiwei Lu & Bangbang He & Zhixuan Gao & Cheng Che & Xuteng Wei & Jihui Ma & Zhichun Zhang & Jiantao Luo, 2019. "An Optimized Regulation Scheme of Improving the Effective Utilization of the Regenerative Braking Energy of the Whole Railway Line," Energies, MDPI, vol. 12(21), pages 1-19, October.
    3. Qiwei Lu & Bangbang He & Mingzhe Wu & Zhichun Zhang & Jiantao Luo & Yankui Zhang & Runkai He & Kunyu Wang, 2018. "Establishment and Analysis of Energy Consumption Model of Heavy-Haul Train on Large Long Slope," Energies, MDPI, vol. 11(4), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Wang & Yueyang Xin & Ziyun Xie & Xiuqing Mu & Xiaoqiang Chen, 2023. "Research on Low-Frequency Stability under Emergency Power Supply Scheme of Photovoltaic and Battery Access Railway Traction Power Supply System," Energies, MDPI, vol. 16(12), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michela Robba & Mansueto Rossi, 2021. "Optimal Control of Hybrid Systems and Renewable Energies," Energies, MDPI, vol. 15(1), pages 1-3, December.
    2. Mo Chen & Zhuang Xiao & Pengfei Sun & Qingyuan Wang & Bo Jin & Xiaoyun Feng, 2019. "Energy-Efficient Driving Strategies for Multi-Train by Optimization and Update Speed Profiles Considering Transmission Losses of Regenerative Energy," Energies, MDPI, vol. 12(18), pages 1-25, September.
    3. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    4. Xiuhua Wang & Kun Yang & Yongzhi Min & Yongliang Wang, 2022. "Localization Method and Finite Element Modelling of the Mid-Point Anchor of High-Speed Railway Distributed in Long Straight Line with Large Slope," Energies, MDPI, vol. 15(16), pages 1-16, August.
    5. Ying Wang & Ya Guo & Xiaoqiang Chen & Yunpeng Zhang & Dong Jin & Jing Xie, 2023. "Research on the Energy Management Strategy of a Hybrid Energy Storage Type Railway Power Conditioner System," Energies, MDPI, vol. 16(15), pages 1-16, August.
    6. Miguel Angel Rodriguez-Cabal & Diego Alejandro Herrera-Jaramillo & Juan David Bastidas-Rodriguez & Juan Pablo Villegas-Ceballos & Kevin Smit Montes-Villa, 2022. "Methodology for the Estimation of Electrical Power Consumed by Locomotives on Undocumented Railroad Tracks," Energies, MDPI, vol. 15(12), pages 1-23, June.
    7. Zhixuan Gao & Qiwei Lu & Cong Wang & Junqing Fu & Bangbang He, 2019. "Energy-Storage-Based Smart Electrical Infrastructure and Regenerative Braking Energy Management in AC-Fed Railways with Neutral Zones," Energies, MDPI, vol. 12(21), pages 1-24, October.
    8. Franciszek Restel & Szymon Mateusz Haładyn, 2022. "The Railway Timetable Evaluation Method in Terms of Operational Robustness against Overloads of the Power Supply System," Energies, MDPI, vol. 15(17), pages 1-17, September.
    9. Qiwei Lu & Bangbang He & Zhixuan Gao & Cheng Che & Xuteng Wei & Jihui Ma & Zhichun Zhang & Jiantao Luo, 2019. "An Optimized Regulation Scheme of Improving the Effective Utilization of the Regenerative Braking Energy of the Whole Railway Line," Energies, MDPI, vol. 12(21), pages 1-19, October.
    10. Szymon Haładyn, 2021. "The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2582-:d:360338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.