IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2426-d357178.html
   My bibliography  Save this article

Application of a GIS-Based Fuzzy Multi-Criteria Evaluation Approach for Wind Farm Site Selection in China

Author

Listed:
  • Mengran Li

    (MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China)

  • Ye Xu

    (MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China)

  • Junhong Guo

    (MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China)

  • Ye Li

    (MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China)

  • Wei Li

    (MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

The development and utilization of wind energy has alleviated the problems of energy shortage and environmental pollution; however, it caused many negative impacts due to suboptimal site selections. This study proposes an innovative method integrating Geographic Information System (GIS), fuzzy Analytic Hierarchy Process (FAHP), and fuzzy VIšekriterijumsko KOmpromisno Rangiranje (VIKOR) for site selection of wind farms in the Wafangdian region, China. The uncertainties caused by subjective judgments of the stakeholders were tackled by the FAHP method firstly, where weight values of six criteria were identified. Next, the fuzzy VIKOR method and GIS tool were used to generate the Qi value of each location for ranking their appropriate degrees for wind energy development. The results demonstrated that the middle and upper parts of the studied area are suitable for the exploitation of wind energy, while the central and eastern areas are unfavorable. The influences exerted by various weight combinations and climate change on a site suitability assessment were examined. The resulting comparison with existing wind farms reflected the practicability and reliability of the proposed method; the estimation of climate change impacts on site selection provided the suggestion and support of a long-term plan for wind power development, and even the energy structure adjustment scheme adapted to climate change.

Suggested Citation

  • Mengran Li & Ye Xu & Junhong Guo & Ye Li & Wei Li, 2020. "Application of a GIS-Based Fuzzy Multi-Criteria Evaluation Approach for Wind Farm Site Selection in China," Energies, MDPI, vol. 13(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2426-:d:357178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2426/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2426/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janke, Jason R., 2010. "Multicriteria GIS modeling of wind and solar farms in Colorado," Renewable Energy, Elsevier, vol. 35(10), pages 2228-2234.
    2. Azadeh, Ali & Rahimi-Golkhandan, Armin & Moghaddam, Mohsen, 2014. "Location optimization of wind power generation–transmission systems under uncertainty using hierarchical fuzzy DEA: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 877-885.
    3. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    4. Xiaowen Ding & Lin Liu & Guohe Huang & Ye Xu & Junhong Guo, 2019. "A Multi-Objective Optimization Model for a Non-Traditional Energy System in Beijing under Climate Change Conditions," Energies, MDPI, vol. 12(9), pages 1-21, May.
    5. Latinopoulos, D. & Kechagia, K., 2015. "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, Elsevier, vol. 78(C), pages 550-560.
    6. Sajid Ali & Choon-Man Jang, 2019. "Selection of Best-Suited Wind Turbines for New Wind Farm Sites Using Techno-Economic and GIS Analysis in South Korea," Energies, MDPI, vol. 12(16), pages 1-22, August.
    7. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    8. Mahdy, Mostafa & Bahaj, AbuBakr S., 2018. "Multi criteria decision analysis for offshore wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 118(C), pages 278-289.
    9. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2016. "GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain," Applied Energy, Elsevier, vol. 171(C), pages 86-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Amsharuk & Grażyna Łaska, 2022. "A Review: Existing Methods for Solving Spatial Planning Problems for Wind Turbines in Poland," Energies, MDPI, vol. 15(23), pages 1-20, November.
    2. Kasım Şimşek & Selçuk Alp, 2022. "Evaluation of Landfill Site Selection by Combining Fuzzy Tools in GIS-Based Multi-Criteria Decision Analysis: A Case Study in Diyarbakır, Turkey," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    3. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    4. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    5. Meysam Asadi & Kazem Pourhossein & Younes Noorollahi & Mousa Marzband & Gregorio Iglesias, 2023. "A New Decision Framework for Hybrid Solar and Wind Power Plant Site Selection Using Linear Regression Modeling Based on GIS-AHP," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    6. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
    7. Silviu Nate & Yuriy Bilan & Mariia Kurylo & Olena Lyashenko & Piotr Napieralski & Ganna Kharlamova, 2021. "Mineral Policy within the Framework of Limited Critical Resources and a Green Energy Transition," Energies, MDPI, vol. 14(9), pages 1-32, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    2. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    3. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    4. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    5. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    6. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Gkeka-Serpetsidaki, Pandora & Tsoutsos, Theocharis, 2022. "A methodological framework for optimal siting of offshore wind farms: A case study on the island of Crete," Energy, Elsevier, vol. 239(PD).
    8. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.
    9. Kumbuso Joshua Nyoni & Anesu Maronga & Paul Gerard Tuohy & Agabu Shane, 2021. "Hydro–Connected Floating PV Renewable Energy System and Onshore Wind Potential in Zambia," Energies, MDPI, vol. 14(17), pages 1-42, August.
    10. Waewsak, Jompob & Ali, Shahid & Natee, Warut & Kongruang, Chuleerat & Chancham, Chana & Gagnon, Yves, 2020. "Assessment of hybrid, firm renewable energy-based power plants: Application in the southernmost region of Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Wang, Yongli & Tao, Siyi & Chen, Xin & Huang, Feifei & Xu, Xiaomin & Liu, Xiaoli & Liu, Yang & Liu, Lin, 2022. "Method multi-criteria decision-making method for site selection analysis and evaluation of urban integrated energy stations based on geographic information system," Renewable Energy, Elsevier, vol. 194(C), pages 273-292.
    12. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    13. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    14. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    15. Geovanna Villacreses & Diego Jijón & Juan Francisco Nicolalde & Javier Martínez-Gómez & Franz Betancourt, 2022. "Multicriteria Decision Analysis of Suitable Location for Wind and Photovoltaic Power Plants on the Galápagos Islands," Energies, MDPI, vol. 16(1), pages 1-23, December.
    16. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    17. Sofia Spyridonidou & Georgia Sismani & Eva Loukogeorgaki & Dimitra G. Vagiona & Hagit Ulanovsky & Daniel Madar, 2021. "Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach," Energies, MDPI, vol. 14(3), pages 1-23, January.
    18. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    19. Shorabeh, Saman Nadizadeh & Firozjaei, Mohammad Karimi & Nematollahi, Omid & Firozjaei, Hamzeh Karimi & Jelokhani-Niaraki, Mohammadreza, 2019. "A risk-based multi-criteria spatial decision analysis for solar power plant site selection in different climates: A case study in Iran," Renewable Energy, Elsevier, vol. 143(C), pages 958-973.
    20. Yildiz, S.S., 2024. "Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2426-:d:357178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.