IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1704-d228496.html
   My bibliography  Save this article

Research on Improved Auto-Tuning of a PID Controller Based on Phase Angle Margin

Author

Listed:
  • Deliang Zeng

    (School of Control and Computer Engineering, North China Electric Power, Beijing 102206, China)

  • Yanqiu Zheng

    (School of Control and Computer Engineering, North China Electric Power, Beijing 102206, China)

  • Wei Luo

    (School of Control and Computer Engineering, North China Electric Power, Beijing 102206, China)

  • Yong Hu

    (School of Control and Computer Engineering, North China Electric Power, Beijing 102206, China)

  • Qingru Cui

    (China Energy Investment, North China Electric Power, Beijing 102206, China)

  • Qing Li

    (School of Control and Computer Engineering, North China Electric Power, Beijing 102206, China)

  • Chen Peng

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)

Abstract

In order to realize fast and efficient tuning of the proportional-integral-derivative (PID) controller parameters in thermal power plants, this paper thoroughly analyzes the problems existing in the relay characteristic method based on the phase angle margin auto-tuning method (PM method), and proposes an improved PM auto-tuning method for the most common first order plus dead time (FOPDT) model in practical engineering applications. The improved algorithm proposes the design of the target phase angle margin and the method of plant identification. Then, the optimization algorithm is used to calculate the correction coefficient of the setting formula to obtain the PID controller parameters that minimize the integrated time absolute error (ITAE) index of the control system. Finally, through the auto-tuning experiment on the generalized control model of the main steam temperature system in thermal power plants, it is verified that the improved algorithm is superior to the traditional PM method and Ziegler–Nichols method (Z-N method), and can obtain a fast and stable control performance.

Suggested Citation

  • Deliang Zeng & Yanqiu Zheng & Wei Luo & Yong Hu & Qingru Cui & Qing Li & Chen Peng, 2019. "Research on Improved Auto-Tuning of a PID Controller Based on Phase Angle Margin," Energies, MDPI, vol. 12(9), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1704-:d:228496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1704/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengcheng Geng & Xiangsong Kong & Changqing Shi & Hang Liu & Jiabin Liu, 2022. "IK-SPSA-Based Performance Optimization Strategy for Steam Generator Level Control System of Nuclear Power Plant," Energies, MDPI, vol. 15(19), pages 1-22, October.
    2. Goran S. Kvascev & Zeljko M. Djurovic, 2022. "Water Level Control in the Thermal Power Plant Steam Separator Based on New PID Tuning Method for Integrating Processes," Energies, MDPI, vol. 15(17), pages 1-17, August.
    3. Geethu Chacko & Lakshmi Syamala & Nithin James & Bos Mathew Jos & Mathew Kallarackal, 2023. "Switching Frequency Limited Hysteresis Based Voltage Mode Control of Single-Phase Voltage Source Inverters," Energies, MDPI, vol. 16(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1704-:d:228496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.