IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1534-d225275.html
   My bibliography  Save this article

Parameter-Free Fault Location Algorithm for Distribution Network T-Type Transmission Lines

Author

Listed:
  • Chengbin Wang

    (Key Laboratory of Power System Intelligent Dispatch and Control (Shandong University), Ministry of Education, Jinan 250061, China)

  • Zhihao Yun

    (Key Laboratory of Power System Intelligent Dispatch and Control (Shandong University), Ministry of Education, Jinan 250061, China)

Abstract

T-type transmission lines have been increasingly used in distribution networks because of the distributed generation integration, but inaccurate line parameters will cause significant error in the results of most existing fault location algorithms for this kind of line. In order to improve the precision, this paper proposes a new fault location algorithm taking line parameters as unknowns. The fault is assumed to occur on each section, and corresponding ranging equations can be built based on one set of three-terminal post-fault synchronous measurements, without using line parameters as inputs. Then, more sets of measurements are utilized to increase the redundancy of equations to resist the influence of data error. The reliable trust-region algorithm is used to solve each group of equations, but only equations of the assumed faulty section with the actual fault point can give the reasonable solutions, accordingly identifying the fault point. The performance of the proposed method is thoroughly investigated with MATLAB/Simulink. The results indicate that the algorithm has a high accuracy and is basically unaffected by fault position, fault resistance, unbalanced fault type, line parameter, and data error.

Suggested Citation

  • Chengbin Wang & Zhihao Yun, 2019. "Parameter-Free Fault Location Algorithm for Distribution Network T-Type Transmission Lines," Energies, MDPI, vol. 12(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1534-:d:225275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1534/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susana Martín Arroyo & Miguel García-Gracia & Antonio Montañés, 2019. "The Half-Sine Method: A New Accurate Location Method Based on Wavelet Transform for Transmission-Line Protection from Single-Ended Measurements," Energies, MDPI, vol. 12(17), pages 1-15, August.
    2. Simone A. Rocha & Thiago G. Mattos & Rodrigo T. N. Cardoso & Eduardo G. Silveira, 2022. "Applying Artificial Neural Networks and Nonlinear Optimization Techniques to Fault Location in Transmission Lines—Statistical Analysis," Energies, MDPI, vol. 15(11), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1534-:d:225275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.