IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1522-d225011.html
   My bibliography  Save this article

Electric Field Effect on the Thermal Decomposition and Co-combustion of Straw with Solid Fuel Pellets

Author

Listed:
  • Inesa Barmina

    (Institute of Physics, University of Latvia, 32 Miera str., 1 LV-2169 Salaspils, Latvia)

  • Antons Kolmickovs

    (Institute of Physics, University of Latvia, 32 Miera str., 1 LV-2169 Salaspils, Latvia)

  • Raimonds Valdmanis

    (Institute of Physics, University of Latvia, 32 Miera str., 1 LV-2169 Salaspils, Latvia)

  • Maija Zake

    (Institute of Physics, University of Latvia, 32 Miera str., 1 LV-2169 Salaspils, Latvia)

  • Sergejs Vostrikovs

    (Institute of Physics, University of Latvia, 32 Miera str., 1 LV-2169 Salaspils, Latvia)

  • Harijs Kalis

    (Institute of Mathematics and Computer Science, University of Latvia, 29 Raina blvd, LV-1459 Riga, Latvia)

  • Uldis Strautins

    (Institute of Mathematics and Computer Science, University of Latvia, 29 Raina blvd, LV-1459 Riga, Latvia)

Abstract

The aim of this study was to provide more effective use of straw for energy production by co-firing wheat straw pellets with solid fuels (wood, peat pellets) under additional electric control of the combustion characteristics at thermo-chemical conversion of fuel mixtures. Effects of the DC electric field on the main combustion characteristics were studied experimentally using a fixed-bed experimental setup with a heat output up to 4 kW. An axisymmetric electric field was applied to the flame base between the positively charged electrode and the grounded wall of the combustion chamber. The experimental study includes local measurements of the composition of the gasification gas, flame temperature, heat output, combustion efficiency and of the composition of the flue gas considering the variation of the bias voltage of the electrode. A mathematical model of the field-induced thermo-chemical conversion of combustible volatiles has been built using MATLAB. The results confirm that the electric field-induced processes of heat and mass transfer allow to control and improve the main combustion characteristics thus enhancing the fuel burnout and increasing the heat output from the device up to 14% and the produced heat per mass of burned solid fuel up to 7%.

Suggested Citation

  • Inesa Barmina & Antons Kolmickovs & Raimonds Valdmanis & Maija Zake & Sergejs Vostrikovs & Harijs Kalis & Uldis Strautins, 2019. "Electric Field Effect on the Thermal Decomposition and Co-combustion of Straw with Solid Fuel Pellets," Energies, MDPI, vol. 12(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1522-:d:225011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arshanitsa, Alexandr & Akishin, Yegor & Zile, Edmund & Dizhbite, Tatiana & Solodovnik, Valentin & Telysheva, Galina, 2016. "Microwave treatment combined with conventional heating of plant biomass pellets in a rotated reactor as a high rate process for solid biofuel manufacture," Renewable Energy, Elsevier, vol. 91(C), pages 386-396.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei Yin Ong & Saifuddin Nomanbhay, 2022. "Optimization Study on Microwave-Assisted Hydrothermal Liquefaction of Malaysian Macroalgae Chaetomorpha sp. for Phenolic-Rich Bio-Oil Production," Energies, MDPI, vol. 15(11), pages 1-22, May.
    2. Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Linards Goldšteins & Māris Gunārs Dzenis & Viesturs Šints & Raimonds Valdmanis & Maija Zaķe & Alexandr Arshanitsa, 2022. "Microwave Pre-Treatment and Blending of Biomass Pellets for Sustainable Use of Local Energy Resources in Energy Production," Energies, MDPI, vol. 15(9), pages 1-21, May.
    4. Alexandr Arshanitsa & Lilija Jashina & Matiss Pals & Raimonds Valdmanis & Maja Zake, 2022. "Effect of Microwave Pre-Treatment of Biomass on the Thermal Oxidative Conversion of Biomass Blends Containing Pre-Treated and Raw Biomass of Different Origination in Terms of Processing Rate and Heat ," Energies, MDPI, vol. 15(19), pages 1-16, September.
    5. Alexandr Arshanitsa & Lilija Jashina & Matiss Pals & Jevgenija Ponomarenko & Yegor Akishin & Maja Zake, 2022. "Characteristics of the Main- and Side-Stream Products of Microwave Assisted Torrefaction of Lignocellulosic Biomass of Different Origination," Energies, MDPI, vol. 15(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1522-:d:225011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.