IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1459-d223635.html
   My bibliography  Save this article

Influence of Inclined Magnetic Field on Carreau Nanoliquid Thin Film Flow and Heat Transfer with Graphene Nanoparticles

Author

Listed:
  • Noor Saeed Khan

    (Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan)

  • Taza Gul

    (Department of Mathematics, City University of Science & Information Technology, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan)

  • Poom Kumam

    (KMUTTFixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
    KMUTT-Fixed Point Theory and Applications Research Group, Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
    Department of Medical Research, China Medical University, Taichung 40402, Taiwan)

  • Zahir Shah

    (Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan)

  • Saeed Islam

    (Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan)

  • Waris Khan

    (Department of Mathematics, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan)

  • Samina Zuhra

    (Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
    Department of Mathematics, Abasyn University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan)

  • Arif Sohail

    (Department of Mathematics, Islamia College University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan)

Abstract

The thermodynamics of a Carreau nanoliquid thin film embedded with graphene nanoparticles past a stretching sheet is studied in the presence of inclined magnetic field and non-uniform heat source/sink. Graphene is a new two-dimensional amphiphilic macromolecule which has great applications due to its electrical and mechanical properties. The basic constitutive equations of Carreau nanoliquid for velocity and temperature have been used. Similarity transformations are adopted to achieve the nonlinear coupled differential equations accompanying boundary conditions embedded with different parameters. HAM (Homotopy Analysis Method) is used to solve the transformed equations for expressions of velocity and temperature. Graphs are shown which illustrate the effects of various parameters of interest. There exists a nice agreement between the present and published results. The results are useful for the thermal conductivity and in the analysis and design of coating processes.

Suggested Citation

  • Noor Saeed Khan & Taza Gul & Poom Kumam & Zahir Shah & Saeed Islam & Waris Khan & Samina Zuhra & Arif Sohail, 2019. "Influence of Inclined Magnetic Field on Carreau Nanoliquid Thin Film Flow and Heat Transfer with Graphene Nanoparticles," Energies, MDPI, vol. 12(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1459-:d:223635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1459/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Rehman & Zabidin Salleh & Taza Gul & Zafar Zaheer, 2019. "The Impact of Viscous Dissipation on the Thin Film Unsteady Flow of GO-EG/GO-W Nanofluids," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    2. Yasir Nawaz & Muhammad Shoaib Arif & Wasfi Shatanawi & Amna Nazeer, 2021. "An Explicit Fourth-Order Compact Numerical Scheme for Heat Transfer of Boundary Layer Flow," Energies, MDPI, vol. 14(12), pages 1-17, June.
    3. Remus-Daniel Ene & Nicolina Pop & Rodica Badarau, 2023. "Heat and Mass Transfer Analysis for the Viscous Fluid Flow: Dual Approximate Solutions," Mathematics, MDPI, vol. 11(7), pages 1-22, March.
    4. Kohilavani Naganthran & Ishak Hashim & Roslinda Nazar, 2020. "Triple Solutions of Carreau Thin Film Flow with Thermocapillarity and Injection on an Unsteady Stretching Sheet," Energies, MDPI, vol. 13(12), pages 1-17, June.
    5. Rustem Kashaev & Nguyen Duc Ahn & Valeriya Kozelkova & Oleg Kozelkov & Valentin Dudkin, 2023. "Online Multiphase Flow Measurement of Crude Oil Properties Using Nuclear (Proton) Magnetic Resonance Automated Measurement Complex for Energy Safety at Smart Oil Deposits," Energies, MDPI, vol. 16(3), pages 1-16, January.
    6. Marcin Kremieniewski, 2020. "Influence of Graphene Oxide on Rheological Parameters of Cement Slurries," Energies, MDPI, vol. 13(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1459-:d:223635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.