IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1379-d221448.html
   My bibliography  Save this article

Detection of Water Content in Transformer Oil Using Multi Frequency Ultrasonic with PCA-GA-BPNN

Author

Listed:
  • Zhuang Yang

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Qu Zhou

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Xiaodong Wu

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Zhongyong Zhao

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Chao Tang

    (College of Engineering and Technology, Southwest University, Chongqing 400715, China)

  • Weigen Chen

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400030, China)

Abstract

The water content in oil is closely related to the deterioration performance of an insulation system, and accurate prediction of water content in oil is important for the stability and security level of power systems. A novel method of measuring water content in transformer oil using multi frequency ultrasonic with a back propagation neural network that was optimized by principal component analysis and genetic algorithm (PCA-GA-BPNN), is reported in this paper. 160 oil samples of different water content were investigated using the multi frequency ultrasonic detection technology. Then the multi frequency ultrasonic data were preprocessed using principal component analysis (PCA), which was implemented to obtain main principal components containing 95% of original information. After that, a genetic algorithm (GA) was incorporated to optimize the parameters for a back propagation neural network (BPNN), including the weight and threshold. Finally, the BPNN model with the optimized parameters was trained with a random 150 sets of pretreatment data, and the generalization ability of the model was tested with the remaining 10 sets. The mean squared error of the test sets was 8.65 × 10 −5 , with a correlation coefficient of 0.98. Results show that the developed PCA-GA-BPNN model is robust and enables accurate prediction of a water content in transformer oil using multi frequency ultrasonic technology.

Suggested Citation

  • Zhuang Yang & Qu Zhou & Xiaodong Wu & Zhongyong Zhao & Chao Tang & Weigen Chen, 2019. "Detection of Water Content in Transformer Oil Using Multi Frequency Ultrasonic with PCA-GA-BPNN," Energies, MDPI, vol. 12(7), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1379-:d:221448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1379/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1379/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shouxiang & Zhang, Na & Wu, Lei & Wang, Yamin, 2016. "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method," Renewable Energy, Elsevier, vol. 94(C), pages 629-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minfeng Wu & Wen Chen, 2022. "Forecast of Electric Vehicle Sales in the World and China Based on PCA-GRNN," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    2. Ioannis F. Gonos & Issouf Fofana, 2020. "Special Issue “Selected Papers from the 2018 IEEE International Conference on High Voltage Engineering (ICHVE 2018)”," Energies, MDPI, vol. 13(18), pages 1-5, September.
    3. Mingbang Zhu & Shanshan Liu & Ziqing Xia & Guangxing Wang & Yueming Hu & Zhenhua Liu, 2020. "Crop Growth Stage GPP-Driven Spectral Model for Evaluation of Cultivated Land Quality Using GA-BPNN," Agriculture, MDPI, vol. 10(8), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    2. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    4. Weijun Wang & Dan Zhao & Liguo Fan & Yulong Jia, 2019. "Study on Icing Prediction of Power Transmission Lines Based on Ensemble Empirical Mode Decomposition and Feature Selection Optimized Extreme Learning Machine," Energies, MDPI, vol. 12(11), pages 1-21, June.
    5. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    6. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    7. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    8. Luo, Haizhi & Zhang, Yiwen & Gao, Xinyu & Liu, Zhengguang & Song, Xia & Meng, Xiangzhao & Yang, Xiaohu, 2024. "Unveiling land use-carbon Nexus: Spatial matrix-enhanced neural network for predicting commercial and residential carbon emissions," Energy, Elsevier, vol. 305(C).
    9. Deyun Wang & Yanling Liu & Zeng Wu & Hongxue Fu & Yong Shi & Haixiang Guo, 2018. "Scenario Analysis of Natural Gas Consumption in China Based on Wavelet Neural Network Optimized by Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 11(4), pages 1-16, April.
    10. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    11. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    12. Wang, Chen & Zhang, Shenghui & Liao, Peng & Fu, Tonglin, 2022. "Wind speed forecasting based on hybrid model with model selection and wind energy conversion," Renewable Energy, Elsevier, vol. 196(C), pages 763-781.
    13. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    14. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    15. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    16. Bai, Yulong & Liu, Ming-De & Ding, Lin & Ma, Yong-Jie, 2021. "Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition," Applied Energy, Elsevier, vol. 301(C).
    17. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    18. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    19. Wang, Jianzhou & Du, Pei & Niu, Tong & Yang, Wendong, 2017. "A novel hybrid system based on a new proposed algorithm—Multi-Objective Whale Optimization Algorithm for wind speed forecasting," Applied Energy, Elsevier, vol. 208(C), pages 344-360.
    20. Sizhou Sun & Jingqi Fu & Ang Li, 2019. "A Compound Wind Power Forecasting Strategy Based on Clustering, Two-Stage Decomposition, Parameter Optimization, and Optimal Combination of Multiple Machine Learning Approaches," Energies, MDPI, vol. 12(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1379-:d:221448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.