IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1232-d218629.html
   My bibliography  Save this article

Comparison of Different Hydraulic Fracturing Scenarios in Horizontal Wells Using XFEM Based on the Cohesive Zone Method

Author

Listed:
  • Jianxiong Li

    (Key Laboratory Deep Underground Science and Engineering, Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

  • Wen Xiao

    (Petroleum Engineering Technology Institute of Shengli Oilfield, Dongying 257000, China)

  • Guanzhong Hao

    (Institute of Gas Recovering Technology in Changqing Oilfield Company Gas Production Plant NO.1, Yulin 718500, China)

  • Shiming Dong

    (Key Laboratory Deep Underground Science and Engineering, Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

  • Wen Hua

    (Key Laboratory Deep Underground Science and Engineering, Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu 610065, China)

  • Xiaolong Li

    (Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China)

Abstract

Multistage hydraulic fracturing is a highly effective method for creating multiple transverse fractures to improve gas and oil reservoir production. It is critical to minimize the fracture spacing while also ensuring transverse propagation of fractures in multi-fractured horizontal wells. In this paper, a 3D fully coupled pore pressure-stress model based on the extended finite element method (XFEM) combined with the cohesive zone method is established to simulate five different fracturing scenarios in close spacing. The sensitivity of mesh size and the integration method are optimal, which are verified by the highly accurate traditional cohesive zone method. Then, the effect of five different fracturing scenarios on fracture geometries is compared. It is shown that spacing is a key parameter controlling fracture geometries in all fracturing scenarios. Alternative sequential and modified two-step fracturing can significantly reduce the influence of stress shadowing to generate more transverse fractures and form longer effective fractures. The sequential and two-step fracturing see an obvious improvement with increased fracture effective length when the spacing increases. The simultaneous fracturing technique can result in excessive closure of the middle fractures, which causes serious insertion of proppants. These results offer a new insight on optimization of hydraulic fracturing and can be a guidance for typical field cases.

Suggested Citation

  • Jianxiong Li & Wen Xiao & Guanzhong Hao & Shiming Dong & Wen Hua & Xiaolong Li, 2019. "Comparison of Different Hydraulic Fracturing Scenarios in Horizontal Wells Using XFEM Based on the Cohesive Zone Method," Energies, MDPI, vol. 12(7), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1232-:d:218629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1232/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Cui & Zhongmin Xiao & Jie Yang & Mi Tian & Qiang Zhang & Ziming Feng, 2022. "Multi-Crack Dynamic Interaction Effect on Oil and Gas Pipeline Weld Joints Based on VCCT," Energies, MDPI, vol. 15(8), pages 1-24, April.
    2. Nana Liu & Yongliang Wang, 2022. "Deflection of Hydraulic Fractures and Shear Stress Disturbance Considering Thermal Effects: A Numerical Case Study," Energies, MDPI, vol. 15(13), pages 1-15, July.
    3. Jianxiong Li & Shiming Dong & Wen Hua & Yang Yang & Xiaolong Li, 2019. "Numerical Simulation on Deflecting Hydraulic Fracture with Refracturing Using Extended Finite Element Method," Energies, MDPI, vol. 12(11), pages 1-19, May.
    4. Xu Yang & Boyun Guo, 2019. "A Data-Driven Workflow Approach to Optimization of Fracture Spacing in Multi-Fractured Shale Oil Wells," Energies, MDPI, vol. 12(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1232-:d:218629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.