Research on Network Intrusion Detection Based on Incremental Extreme Learning Machine and Adaptive Principal Component Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kyung Choi & Xinyi Chen & Shi Li & Mihui Kim & Kijoon Chae & JungChan Na, 2012. "Intrusion Detection of NSM Based DoS Attacks Using Data Mining in Smart Grid," Energies, MDPI, vol. 5(10), pages 1-19, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ke Zhang & Zhi Hu & Yufei Zhan & Xiaofen Wang & Keyi Guo, 2020. "A Smart Grid AMI Intrusion Detection Strategy Based on Extreme Learning Machine," Energies, MDPI, vol. 13(18), pages 1-19, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ines Ortega-Fernandez & Francesco Liberati, 2023. "A Review of Denial of Service Attack and Mitigation in the Smart Grid Using Reinforcement Learning," Energies, MDPI, vol. 16(2), pages 1-15, January.
- Matthew Boeding & Kelly Boswell & Michael Hempel & Hamid Sharif & Juan Lopez & Kalyan Perumalla, 2022. "Survey of Cybersecurity Governance, Threats, and Countermeasures for the Power Grid," Energies, MDPI, vol. 15(22), pages 1-22, November.
- Neetesh Saxena & Bong Jun Choi, 2015. "State of the Art Authentication, Access Control, and Secure Integration in Smart Grid," Energies, MDPI, vol. 8(10), pages 1-33, October.
More about this item
Keywords
network intrusion detection (IDS); incremented extreme learning machine (I-ELM); adaptive-principal component analysis (A-PCA); NSL-KDD; UNSW-NB15;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1223-:d:218320. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.