IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1185-d217438.html
   My bibliography  Save this article

Simulation of Temperature Distribution on the Face Skin in Case of Advanced Personalized Ventilation System

Author

Listed:
  • Ferenc Szodrai

    (Department of Building Services and Building Engineering, University of Debrecen; Otemeto str. 2-4, 4028 Debrecen, Hungary)

  • Ferenc Kalmár

    (Department of Building Services and Building Engineering, University of Debrecen; Otemeto str. 2-4, 4028 Debrecen, Hungary)

Abstract

Energy saving is one of the most important research directions in the building sector. Personalized ventilation systems are energy conscious solutions providing fresh air for the occupants. As a side effect, cooling energy can be saved due to higher convective heat removal. Using the data gathered from previous experiments performed with the developed personalized ventilation system, a ±1.408 °C accurate simulation model was created in ANSYS 19.2 Academic version in order to determine the temperature distribution on the face. In this paper, the method and the first results are presented. It was clearly demonstrated by measurements and simulations that the personalized ventilation equipment used has a considerable effect on the skin temperature of the face. The developed model can be used to analyze the skin temperature on the faces of people using the novel, personalized ventilation equipment. This way the time spent on examination can be reduced considerably.

Suggested Citation

  • Ferenc Szodrai & Ferenc Kalmár, 2019. "Simulation of Temperature Distribution on the Face Skin in Case of Advanced Personalized Ventilation System," Energies, MDPI, vol. 12(7), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1185-:d:217438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1185/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Barmparesos & Dimitra Papadaki & Michalis Karalis & Kyriaki Fameliari & Margarita Niki Assimakopoulos, 2019. "In Situ Measurements of Energy Consumption and Indoor Environmental Quality of a Pre-Retrofitted Student Dormitory in Athens," Energies, MDPI, vol. 12(11), pages 1-19, June.
    2. Bin Yang & Pengju Liu & Yihang Liu & Dacheng Jin & Faming Wang, 2022. "Assessment of Thermal Comfort and Air Quality of Room Conditions by Impinging Jet Ventilation Integrated with Ductless Personalized Ventilation," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    3. Imre Csáky, 2020. "Air Terminal Devices Developed for Personal Ventilation Systems," Energies, MDPI, vol. 13(7), pages 1-11, April.
    4. Kalmár, Tünde & Szodrai, Ferenc & Kalmár, Ferenc, 2022. "Experimental study of local effectiveness in the case of balanced mechanical ventilation in small offices," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1185-:d:217438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.