IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i6p1103-d216061.html
   My bibliography  Save this article

A Driving Technique for AC-AC Direct Matrix Converters Based on Sigma-Delta Modulation

Author

Listed:
  • Simone Orcioni

    (DII—Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy)

  • Giorgio Biagetti

    (DII—Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy)

  • Paolo Crippa

    (DII—Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy)

  • Laura Falaschetti

    (DII—Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, Via Brecce Bianche 12, I-60131 Ancona, Italy)

Abstract

Direct conversion of AC power between three-phase systems operating at different frequencies can be achieved using solid-state circuits known as matrix converters. These converters do not need energy storage elements, but they require sophisticated control algorithms to operate the switches. In this work we propose and evaluate the use of a sigma-delta modulation approach to control the operation of a direct matrix converter, together with a revised line filter topology suited to better handle the peculiarities of the switching noise produced by the sigma-delta modulation. Simulation results show the feasibility of such an approach, which is able to generate arbitrary output waveforms and adjust its input reactive power. Comparison with a space vector modulation implementation shows also better performance about total harmonic distortion, i.e., less harmonics in the input and output.

Suggested Citation

  • Simone Orcioni & Giorgio Biagetti & Paolo Crippa & Laura Falaschetti, 2019. "A Driving Technique for AC-AC Direct Matrix Converters Based on Sigma-Delta Modulation," Energies, MDPI, vol. 12(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1103-:d:216061
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/6/1103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/6/1103/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Gwóźdź, 2021. "Power Electronics Programmable Voltage Source with Reduced Ripple Component of Output Signal Based on Continuous-Time Sigma-Delta Modulator," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. Abdelhakim Dendouga, 2020. "Conventional and Second Order Sliding Mode Control of Permanent Magnet Synchronous Motor Fed by Direct Matrix Converter: Comparative Study," Energies, MDPI, vol. 13(19), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1103-:d:216061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.