IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p734-d208339.html
   My bibliography  Save this article

Mathematical Explanations of a Paradox Observed in a HVAC (High Voltage Alternating Current) Untransposed Overhead Line

Author

Listed:
  • Adrian Pană

    (Electrical Power Engineering Department, Politehnica University of Timișoara, 300223 Timisoara, Romania)

  • Alexandru Băloi

    (Electrical Power Engineering Department, Politehnica University of Timișoara, 300223 Timisoara, Romania)

  • Florin Molnar-Matei

    (Electrical Power Engineering Department, Politehnica University of Timișoara, 300223 Timisoara, Romania)

Abstract

The constructive asymmetry of the untransposed overhead lines of a high voltage alternating current is the cause of a great number of difficulties in their operation and modeling. In order to model the operating regimes of such lines, the symmetrical component method, based on constructive symmetry and thus the symmetry of the equivalent phase parameters, is inappropriate, which is why many research papers have been dedicated to either setting up improved modeling methods or to returning to phase coordinate modeling. This paper intends to justify a paradox found on some untransposed overhead lines of a high voltage alternating current during the no-load operating conditions by performing phase coordinate modeling. In such a situation, the transmission or distribution operators measured significant negative values for the active powers on one or two phases at the beginning of the lines. Considering the case of a real untransposed overhead line operating under no-load conditions, the paper starts from presenting the recorded electrical values. Then, the paper moves on to outlining the Carson’s simplified computing relations for calculating the series and shunt primitive equivalent parameters and Kron’s transformation relationships for calculating the phase equivalent parameters. After applying them to the real line, the calculation of the power flow for the no-load operating conditions, which is applied to an equivalent scheme of the line consisting of nine identical octopoles, is performed. Both the untransposed line and its transposed variant are studied here. The values of the electrical amounts obtained by the calculation for the untransposed line are basically similar to those obtained by measuring on the real line, which gives a mathematical confirmation of the so-called paradox. Its occurrence represents the effect of the asymmetry of the equivalent phase capacities, which causes a redistribution of the active powers between the phases of the network to which the overhead line operating in no-load conditions is connected.

Suggested Citation

  • Adrian Pană & Alexandru Băloi & Florin Molnar-Matei, 2019. "Mathematical Explanations of a Paradox Observed in a HVAC (High Voltage Alternating Current) Untransposed Overhead Line," Energies, MDPI, vol. 12(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:734-:d:208339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Benato & Sebastian Dambone Sessa & Fabio Guglielmi, 2012. "Determination of Steady-State and Faulty Regimes of Overhead Lines by Means of Multiconductor Cell Analysis (MCA)," Energies, MDPI, vol. 5(8), pages 1-23, July.
    2. Yanling Wang & Yang Mo & Mingqiang Wang & Xiaofeng Zhou & Likai Liang & Pei Zhang, 2018. "Impact of Conductor Temperature Time–Space Variation on the Power System Operational State," Energies, MDPI, vol. 11(4), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andriy Chaban & Marek Lis & Andrzej Szafraniec & Vitaliy Levoniuk, 2022. "An Application of the Hamilton–Ostrogradsky Principle to the Modeling of an Asymmetrically Loaded Three-Phase Power Line," Energies, MDPI, vol. 15(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiazheng Lu & Yu Liu & Guoyong Zhang & Bo Li & Lifu He & Jing Luo, 2018. "Partition dynamic threshold monitoring technology of wildfires near overhead transmission lines by satellite," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1327-1340, December.
    2. Roberto Benato & İbrahim Balanuye & Fatih Köksal & Nurhan Ozan & Ercüment Özdemirci, 2018. "Installation of XLPE-Insulated 400 kV Submarine AC Power Cables under the Dardanelles Strait: A 4 GW Turkish Grid Reinforcement," Energies, MDPI, vol. 11(1), pages 1-15, January.
    3. Xiansi Lou & Wei Chen & Chuangxin Guo, 2019. "Using the Thermal Inertia of Transmission Lines for Coping with Post-Contingency Overflows," Energies, MDPI, vol. 13(1), pages 1-23, December.
    4. Roberto Benato & Sebastian Dambone Sessa & Fabio Guglielmi & Ertugrul Partal & Nasser Tleis, 2014. "Ground Return Current Behaviour in High Voltage Alternating Current Insulated Cables," Energies, MDPI, vol. 7(12), pages 1-16, December.
    5. Mirza Sarajlić & Jože Pihler & Nermin Sarajlić & Gorazd Štumberger, 2018. "Identification of the Heat Equation Parameters for Estimation of a Bare Overhead Conductor’s Temperature by the Differential Evolution Algorithm," Energies, MDPI, vol. 11(8), pages 1-17, August.
    6. Roberto Benato & Roberto Caldon & Antonio Chiarelli & Massimiliano Coppo & Claudio Garescì & Sebastian Dambone Sessa & Debora Mimo & Michele Modesti & Luca Mora & Francesca Piovesan, 2019. "CALAJOULE: An Italian Research to Lessen Joule Power Losses in Overhead Lines by Means of Innovative Conductors," Energies, MDPI, vol. 12(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:734-:d:208339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.