IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p733-d208332.html
   My bibliography  Save this article

A Continuation Power Flow Model of Multi-Area AC/DC Interconnected Bulk Systems Incorporating Voltage Source Converter-Based Multi-Terminal DC Networks and Its Decoupling Algorithm

Author

Listed:
  • Wei Yan

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Chong Ding

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Zhouyang Ren

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Wei-Jen Lee

    (Energy Systems Research Center, The University of Texas at Arlington, Arlington, TX 76013, USA)

Abstract

Existing continuation power flow (CPF) models mainly focus on the regional independent systems, which are not suitable for multi-area AC/DC interconnected systems because the market trading behaviors and security control for power allocation of tie-lines are ignored. This study presents a novel CPF model and its decoupling algorithm for multi-area AC/DC interconnected systems incorporating a voltage source converter (VSC)-based multi-terminal direct current (MTDC) network. This CPF model includes the following unique features: (1) In view of the bilateral power trading contracts among regional subsystems, the nonlinear constraint equations of directional trading active power via interface are derived, and the multi-balancing machine strategy is introduced to realize the active power balance of each subsystem. (2) An accurate simulation method for the security control behaviors of the power allocation in tie-lines is proposed, which includes a specific selection strategy for automatic generation control units and a generation re-dispatch strategy. These two strategies work together to prevent the serious overload in tie-lines during load growth and improve the voltage stability margin of the interconnected bulk systems. (3) The switching characteristic of reactive power control behaviors of VSC stations is simulated in the CPF calculation. In the end, a novel decoupling CPF algorithm based on bi-directional iteration is presented to realize the decomposition and coordination calculation. This decoupling algorithm preserves the precision and convergence of integrated CPF algorithms, and it has an apparent advantage on the calculation speed. Furthermore, this decoupling algorithm also can easily reflects the effects of the control mode changes of VSC stations to the voltage stability margin of AC system. Case studies and comparative analysis on the IEEE two-area RTS-96 system indicate the effectiveness and validity of the proposed CPF model and corresponding decoupling algorithm.

Suggested Citation

  • Wei Yan & Chong Ding & Zhouyang Ren & Wei-Jen Lee, 2019. "A Continuation Power Flow Model of Multi-Area AC/DC Interconnected Bulk Systems Incorporating Voltage Source Converter-Based Multi-Terminal DC Networks and Its Decoupling Algorithm," Energies, MDPI, vol. 12(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:733-:d:208332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haichao Wang & Giulia Di Pietro & Xiaozhou Wu & Risto Lahdelma & Vittorio Verda & Ilkka Haavisto, 2018. "Renewable and Sustainable Energy Transitions for Countries with Different Climates and Renewable Energy Sources Potentials," Energies, MDPI, vol. 11(12), pages 1-32, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juyong Kim & Hongjoo Kim & Jintae Cho & Youngpyo Cho & Yoonsung Cho & Sukcheol Kim, 2020. "Demonstration Study of Voltage Control of DC Grid Using Energy Management System Based DC Applications," Energies, MDPI, vol. 13(17), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    3. Jun-Ho Huh & Jong Hyuk Park, 2020. "Decrepit Building Monitoring Solution for Zero Energy Building Management Using PLC and Android Application," Sustainability, MDPI, vol. 12(5), pages 1-26, March.
    4. Muhammad Ikram, 2021. "Models for Predicting Non-Renewable Energy Competing with Renewable Source for Sustainable Energy Development: Case of Asia and Oceania Region," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 133-160, December.
    5. Abrar Ahmed Chhipa & Vinod Kumar & Raghuveer Raj Joshi & Prasun Chakrabarti & Michal Jasinski & Alessandro Burgio & Zbigniew Leonowicz & Elzbieta Jasinska & Rajkumar Soni & Tulika Chakrabarti, 2021. "Adaptive Neuro-Fuzzy Inference System-Based Maximum Power Tracking Controller for Variable Speed WECS," Energies, MDPI, vol. 14(19), pages 1-19, October.
    6. László Berényi & Zoltán Birkner & Nikolett Deutsch, 2020. "A Multidimensional Evaluation of Renewable and Nuclear Energy among Higher Education Students," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    7. Rikkas, Rebecka & Lahdelma, Risto, 2021. "Energy supply and storage optimization for mixed-type buildings," Energy, Elsevier, vol. 231(C).
    8. Antonio Moretti & Charalampos Pitas & George Christofi & Emmanuel Bué & Modesto Gabrieli Francescato, 2020. "Grid Integration as a Strategy of Med-TSO in the Mediterranean Area in the Framework of Climate Change and Energy Transition," Energies, MDPI, vol. 13(20), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:733-:d:208332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.