IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p628-d206351.html
   My bibliography  Save this article

Stability of Split-Level Gob-Side Entry in Ultra-Thick Coal Seams: A Case Study at Xiegou Mine

Author

Listed:
  • Junwen Zhang

    (State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
    School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

Abstract

Split-level longwall gob-side entry (SLGE) has been applied as a special form of small gate pillar mining (or non-coal pillar mining) in thick coal seams. The stability of the coal pillar directly affects the rationality of the layout of the SLGE. Starting from the mining-induced influence around the SLGE, this paper compares the mechanical properties of coal under different mining effects, and studies the rationality of “zero pillar” location against the Xiegou coal mine. The study shows that the key to success of the application of the SLGE is the existence of an intact zone within the triangular coal pillar in spite of double disturbances due to tunneling and coal mining extraction. Laboratory testing shows that the density and uniaxial compressive strength of rock specimens obtained from the triangular coal pillar are smaller than that from the other part of the panel which is concluded to be due to the varied degree of mining-induced influence. The numerical modeling results show that most of the triangular coal pillar is intact after extraction of the panel, and that the peak stress is located in the solid coal beyond the triangular coal pillar. The plastic zone of the triangular coal pillar is only about 1 m after the excavation of the tail gate of the next split-level panel. The physical modeling shows that the tail gate of the next panel is in the destressed zone with only a very small stress fluctuation during the extraction of the next panel. The study shows that the location of the SLGE at Xiegou coal mine is reasonable. SLGE is preferable for ultra-thick coal seams.

Suggested Citation

  • Junwen Zhang, 2019. "Stability of Split-Level Gob-Side Entry in Ultra-Thick Coal Seams: A Case Study at Xiegou Mine," Energies, MDPI, vol. 12(4), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:628-:d:206351
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guorui Feng & Pengfei Wang & Yoginder P. Chugh, 2018. "A New Gob-Side Entry Layout for Longwall Top Coal Caving," Energies, MDPI, vol. 11(5), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dingchao Chen & Xiangyu Wang & Feiteng Zhang & Menglong Li & Xiangqian Zhao & Guanjun Li & Yang Yu & Guanghui Wang & Jiaxin Zhao & Xiangdong Wang, 2022. "Research on Directional Controllability of Cracking in Hydraulic Fracturing of Hard Overburden Based on Local Stress Field Intervention," Energies, MDPI, vol. 15(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Wang & Sitao Zhu & Fuxing Jiang & Jinhai Liu & Xiaoguang Shang & Xiufeng Zhang, 2020. "Investigating the Width of Isolated Coal Pillars in Deep Hard-Strata Mines for Prevention of Mine Seismicity and Rockburst," Energies, MDPI, vol. 13(17), pages 1-18, August.
    2. Yuqi Ren & Guorui Feng & Pengfei Wang & Jun Guo & Yi Luo & Ruipeng Qian & Qiang Sun & Songyu Li & Yonggan Yan, 2019. "Vertical Stress and Deformation Characteristics of Roadside Backfilling Body in Gob-Side Entry for Thick Coal Seams with Different Pre-Split Angles," Energies, MDPI, vol. 12(7), pages 1-16, April.
    3. Shixing Cheng & Zhanguo Ma & Peng Gong & Kelong Li & Ning Li & Tuo Wang, 2020. "Controlling the Deformation of a Small Coal Pillar Retaining Roadway by Non-Penetrating Directional Pre-Splitting Blasting with a Deep Hole: A Case Study in Wangzhuang Coal Mine," Energies, MDPI, vol. 13(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:628-:d:206351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.