IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p543-d204580.html
   My bibliography  Save this article

Self-Shattering Defect Detection of Glass Insulators Based on Spatial Features

Author

Listed:
  • Haiyan Cheng

    (Hebei Engineering Research Center of Simulation and Optimized Control for Power Generation, North China Electric Power University, Baoding 071003, China)

  • Yongjie Zhai

    (Hebei Engineering Research Center of Simulation and Optimized Control for Power Generation, North China Electric Power University, Baoding 071003, China)

  • Rui Chen

    (Hebei Engineering Research Center of Simulation and Optimized Control for Power Generation, North China Electric Power University, Baoding 071003, China)

  • Di Wang

    (Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang 550002, China)

  • Ze Dong

    (Hebei Engineering Research Center of Simulation and Optimized Control for Power Generation, North China Electric Power University, Baoding 071003, China)

  • Yutao Wang

    (Hebei Engineering Research Center of Simulation and Optimized Control for Power Generation, North China Electric Power University, Baoding 071003, China)

Abstract

During an automatic power transmission line inspection, a large number of images are collected by unmanned aerial vehicles (UAVs) to detect existing defects in transmission line components, especially insulators. However, with twin insulator strings in the inspection images, when the umbrella skirts of the rear string are obstructed by the front string, defect detection becomes difficult. To solve this problem, we propose a method to detect self-shattering defects of insulators based on spatial features contained in images. Firstly, the images are segmented according to the particular color features of glass insulators, and the main axes of insulator strings in the images are adjusted to the horizontal direction. Then, the connected regions of insulators in the images are marked. After that, the vertical lengths of the regions, the number of insulator pixels in the regions, as well as the horizontal distances between two adjacent connected regions are selected as spatial features, based on which defect discriminants are formulated. Finally, experiments are performed using the proposed formula to detect self-shattering defects in the insulators, using the spatial distribution of the connected regions to locate the defects. The experiment results indicate that the proposed method has good detection accuracy and localization precision.

Suggested Citation

  • Haiyan Cheng & Yongjie Zhai & Rui Chen & Di Wang & Ze Dong & Yutao Wang, 2019. "Self-Shattering Defect Detection of Glass Insulators Based on Spatial Features," Energies, MDPI, vol. 12(3), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:543-:d:204580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/543/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanyang Liu & Yiquan Wu & Jingjing Liu & Jiaming Han, 2021. "MTI-YOLO: A Light-Weight and Real-Time Deep Neural Network for Insulator Detection in Complex Aerial Images," Energies, MDPI, vol. 14(5), pages 1-19, March.
    2. Jingjing Liu & Chuanyang Liu & Yiquan Wu & Huajie Xu & Zuo Sun, 2021. "An Improved Method Based on Deep Learning for Insulator Fault Detection in Diverse Aerial Images," Energies, MDPI, vol. 14(14), pages 1-19, July.
    3. Zahid Ali Siddiqui & Unsang Park, 2020. "A Drone Based Transmission Line Components Inspection System with Deep Learning Technique," Energies, MDPI, vol. 13(13), pages 1-24, June.
    4. Ju Wang & Guoqiang Wang & Xiaoxuan Hu & He Luo & Haiqing Xu, 2020. "Cooperative Transmission Tower Inspection with a Vehicle and a UAV in Urban Areas," Energies, MDPI, vol. 13(2), pages 1-17, January.
    5. Xiaoming Zhang & Hui Yin, 2019. "A Monocular Vision-Based Framework for Power Cable Cross-Section Measurement," Energies, MDPI, vol. 12(15), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:543-:d:204580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.