IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p505-d203627.html
   My bibliography  Save this article

Time-Aware Monitoring of Overhead Transmission Line Sag and Temperature with LoRa Communication

Author

Listed:
  • Michal Wydra

    (Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland)

  • Pawel Kubaczynski

    (Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, 20-031 Lublin, Poland)

  • Katarzyna Mazur

    (Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, 20-031 Lublin, Poland)

  • Bogdan Ksiezopolski

    (Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, 20-031 Lublin, Poland)

Abstract

The techniques of Dynamic Line Rating (DLR) for Overhead Transmission Line (OTL)’s are currently dynamically developed. DLR systems typically rely on weather, temperature, inclination, and current measurements to calculate tension and sag, where sensors need to be installed directly on wires. Such systems are very reliable and ensure high accuracy in determining maximum allowable current. However, their installation may require switching off the transmission line from the operation. In order to receive precise values regarding the actual operating conditions of the whole transmission line, DLR sensors measuring wire temperature or tension should be installed at many points of OTL. The minimum number of installation points should cover at least each tension section and critical spans, thereby increasing installation costs. The alternative method that allows for the monitoring of OTL is the use of the vision system based on cameras. Installed on the OTLs’ poles, cameras can take photos which, appropriately processed, can provide data about the sag and temperature of wires, without the necessity of switching OTL from the operation for installation or further maintenance. Such a vision system facilitates also data transmission, because it does not require measurement data to be transmitted from the sensor station installed on the wire to the base station located on the pole (for instance, via radio). This article aims to present the concept of a vision system that monitors sag and temperature of Overhead Transmission Lines (OTLs)’ using Long Range (LoRa) wireless communication and data transmission. The developed system consists of a camera and a microcomputer equipped with LoRa communication module. The whole system monitors OTLs’ spans by taking photos, processing images for wire sag-temperature estimation, and sending results to the operator’s Supervisory Control And Data Acquisition (SCADA). The system communication architecture is also proposed and investigated for data transmission time when monitoring the whole OTL.

Suggested Citation

  • Michal Wydra & Pawel Kubaczynski & Katarzyna Mazur & Bogdan Ksiezopolski, 2019. "Time-Aware Monitoring of Overhead Transmission Line Sag and Temperature with LoRa Communication," Energies, MDPI, vol. 12(3), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:505-:d:203627
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/505/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolay Lysov & Alexander Temnikov & Leonid Chernensky & Alexander Orlov & Olga Belova & Tatiana Kivshar & Dmitry Kovalev & Vadim Voevodin, 2021. "Artificial Negative Polarity Thunderstorm Cell Modeling of Nearby Incomplete Upward Discharges’ Influence on Elements of Monitoring Systems for Air Transmission Lines," Energies, MDPI, vol. 14(21), pages 1-17, October.
    2. Davide Della Giustina & Stefano Rinaldi & Stefano Robustelli & Andrea Angioni, 2021. "Massive Generation of Customer Load Profiles for Large Scale State Estimation Deployment: An Approach to Exploit AMI Limited Data," Energies, MDPI, vol. 14(5), pages 1-26, February.
    3. Jing Li & Jinrui Tang & Xinze Wang & Binyu Xiong & Shenjun Zhan & Zilong Zhao & Hui Hou & Wanying Qi & Zhenhai Li, 2020. "Optimal Placement of IoT-Based Fault Indicator to Shorten Outage Time in Integrated Cyber-Physical Medium-Voltage Distribution Network," Energies, MDPI, vol. 13(18), pages 1-21, September.
    4. Carlo Olivieri & Francesco de Paulis & Antonio Orlandi & Giorgio Giannuzzi & Roberto Salvati & Roberto Zaottini & Carlo Morandini & Lorenzo Mocarelli, 2019. "Remote Monitoring of Joints Status on In-Service High-Voltage Overhead Lines," Energies, MDPI, vol. 12(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:505-:d:203627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.