IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i24p4782-d298200.html
   My bibliography  Save this article

Heat Energy and Gas Emissions during Composting of Sewage Sludge

Author

Listed:
  • Grażyna Żukowska

    (Faculty of Agrobioengineering Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, ul. St. Leszczynskiego 7, 20-069 Lublin, Poland)

  • Jakub Mazurkiewicz

    (Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland)

  • Magdalena Myszura

    (Faculty of Agrobioengineering Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, ul. St. Leszczynskiego 7, 20-069 Lublin, Poland)

  • Wojciech Czekała

    (Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland)

Abstract

The composting of sewage sludge and maize straw mixtures was investigated in this study. The aim was to analyze the influence of different proportions of sewage sludge and maize straw in the mixtures on composting process dynamics (expressed by heat production) and gas emissions. The results showed that all examined mixtures reached a strong thermophilic phase of composting; however, the lowest dynamic of temperature growth was observed in the case of the biggest sewage sludge content (60% of sewage sludge in the composting mixture). The ammonia concentration inside bioreactor chambers was directly related to the content of sewage sludge in the composted mixture. Excessive contents of sewage sludge had a considerable effect on very low C/N ratios and high losses through ammonia emissions. Tests were carried out in reactors with a capacity of 160 dm 3 under controlled conditions. All mixtures were aerated by the average air-flow of about 2.5 dm 3 ∙min −1 , i.e., the minimum air-flow that allows a temperature of about 70 °C to be reached and a sufficiently long thermophilic phase, which ensures proper composting.

Suggested Citation

  • Grażyna Żukowska & Jakub Mazurkiewicz & Magdalena Myszura & Wojciech Czekała, 2019. "Heat Energy and Gas Emissions during Composting of Sewage Sludge," Energies, MDPI, vol. 12(24), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4782-:d:298200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/24/4782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/24/4782/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaroslav Bajko & Jan Fišer & Miroslav Jícha, 2019. "Condenser-Type Heat Exchanger for Compost Heat Recovery Systems," Energies, MDPI, vol. 12(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Sołowiej & Patrycja Pochwatka & Agnieszka Wawrzyniak & Krzysztof Łapiński & Andrzej Lewicki & Jacek Dach, 2021. "The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process," Energies, MDPI, vol. 14(4), pages 1-14, February.
    2. Robert Hren & Aleksandra Petrovič & Lidija Čuček & Marjana Simonič, 2020. "Determination of Various Parameters during Thermal and Biological Pretreatment of Waste Materials," Energies, MDPI, vol. 13(9), pages 1-15, May.
    3. Jakub Mazurkiewicz, 2022. "The Biogas Potential of Oxytree Leaves," Energies, MDPI, vol. 15(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Sołowiej & Patrycja Pochwatka & Agnieszka Wawrzyniak & Krzysztof Łapiński & Andrzej Lewicki & Jacek Dach, 2021. "The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process," Energies, MDPI, vol. 14(4), pages 1-14, February.
    2. Vittorio Sessa & Ramchandra Bhandari, 2023. "Composting Heat Recovery for Residential Consumption: An Assessment of Viability," Sustainability, MDPI, vol. 15(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4782-:d:298200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.