IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4497-d290992.html
   My bibliography  Save this article

A Hybrid Methodology for Analyzing the Performance of Induction Motors with Efficiency Improvement by Specific Commercial Measures

Author

Listed:
  • Chengliu Ai

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA)

  • Christopher H.T. Lee

    (School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore)

  • James L. Kirtley

    (Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA)

  • Yuanfeng Huang

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China)

  • Haifeng Wang

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China)

  • Zhiwei Zhang

    (Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA)

Abstract

This paper presents a hybrid methodology to analyze the commercial measures of changing stator windings and adjusting air gap length to upgrade efficiency of typical three-phase direct-on-line induction motors with die-cast copper rotor (DCR). The calculation is carried out through combining the time-stepping and time-harmonic finite element analysis (FEA) and the circuit equivalent circuit model. Typical full-load performance of stator windings with different air gap lengths are computed by MATLAB invoking the 2D transient and eddy current field analysis in ANSYS/MAXWELL. Then, MATLAB scripts about post-processing of the FEA results are used to obtain the full-load running performance including the loss distribution and circulating current. The MATLAB scripts of circuit model built based on the FEA results is used to compare the overload and starting performance. After that, four stators with the four windings and three DCRs with different air gap of an 11 kW motor are fabricated and tested to validate the calculations. By comparing results from both calculations and measurements, it is shown that the factors of stator windings and air gap length can effectively improve the efficiency of the 11 kW DCR induction motor without the addition of extra materials. The motor with the 11/12 pitch Y-Δ series winding and 0.6 mm air gap has the best performance, in terms of efficiency, overloading capability and starting performance. Its efficiency can increase from 90% to the highest 92.35% by sole adjustment of stator winding and air gap length.

Suggested Citation

  • Chengliu Ai & Christopher H.T. Lee & James L. Kirtley & Yuanfeng Huang & Haifeng Wang & Zhiwei Zhang, 2019. "A Hybrid Methodology for Analyzing the Performance of Induction Motors with Efficiency Improvement by Specific Commercial Measures," Energies, MDPI, vol. 12(23), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4497-:d:290992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saleh A. Al-Jufout & Wasseem H. Al-rousan & Caisheng Wang, 2018. "Optimization of Induction Motor Equivalent Circuit Parameter Estimation Based on Manufacturer’s Data," Energies, MDPI, vol. 11(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominik Mamcarz & Paweł Albrechtowicz & Natalia Radwan-Pragłowska & Bartosz Rozegnał, 2020. "The Analysis of the Symmetrical Short-Circuit Currents in Backup Power Supply Systems with Low-Power Synchronous Generators," Energies, MDPI, vol. 13(17), pages 1-14, August.
    2. Maria Dems & Krzysztof Komeza & Witold Kubiak & Jacek Szulakowski, 2020. "Impact of Core Sheet Cutting Method on Parameters of Induction Motors," Energies, MDPI, vol. 13(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Jin Zhao & Quan Yin, 2021. "Model-Based Predictive Rotor Field-Oriented Angle Compensation for Induction Machine Drives," Energies, MDPI, vol. 14(8), pages 1-13, April.
    2. Shailendra Rajput & Eliyahu Farber & Moshe Averbukh, 2021. "Optimal Selection of Asynchronous Motor-Gearhead Couple Fed by VFD for Electrified Vehicle Propulsion," Energies, MDPI, vol. 14(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4497-:d:290992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.