IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4387-d288374.html
   My bibliography  Save this article

Optimal Coordination of Wind Power and Pumped Hydro Energy Storage

Author

Listed:
  • Hussein M. K. Al-Masri

    (Department of Electrical Power Engineering, Yarmouk University, Irbid 21163, Jordan)

  • Ayman Al-Quraan

    (Department of Electrical Power Engineering, Yarmouk University, Irbid 21163, Jordan)

  • Ahmad AbuElrub

    (Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan)

  • Mehrdad Ehsani

    (Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA)

Abstract

A study combining wind power with pumped hydro energy storage for the Jordanian utility grid is presented. Three solvers of the Matlab optimization toolbox are used to find the optimal solution for the cost of energy in a combined on-grid system. Genetic algorithm, simulated annealing (SA), and pattern search (PS) solvers are used to find the optimal solution. The GA solution of 0.0955388 $/kWh is economically feasible. This is 28.7% lower than the electricity purchased from the conventional utility grid. The discounted payback period to recover the total cost is 10.271 years. The suggested configuration is shown to be feasible by comparing it to real measurements for this case and a previous wind-only case. It is shown that the indicators of the optimal solution are improved. For instance, carbon dioxide emissions (E CO2 ) and conventional grid energy purchases are reduced by 24.69% and 24.68%, respectively. Moreover, it is shown that the benefits of adding hydro storage, combined with increasing the number of wind turbine units, reduces the cost of energy of renewables (COE Renewables ). Therefore, combining hydro storage with wind power is economically, environmentally, and technically a more efficient alternative to the conventional power generation.

Suggested Citation

  • Hussein M. K. Al-Masri & Ayman Al-Quraan & Ahmad AbuElrub & Mehrdad Ehsani, 2019. "Optimal Coordination of Wind Power and Pumped Hydro Energy Storage," Energies, MDPI, vol. 12(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4387-:d:288374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Abuelrub & Osama Saadeh & Hussein M. K. Al-Masri, 2018. "Scenario Aggregation-Based Grid-Connected Photovoltaic Plant Design," Sustainability, MDPI, vol. 10(4), pages 1-13, April.
    2. Foley, A.M. & Leahy, P.G. & Li, K. & McKeogh, E.J. & Morrison, A.P., 2015. "A long-term analysis of pumped hydro storage to firm wind power," Applied Energy, Elsevier, vol. 137(C), pages 638-648.
    3. Hammad, M. & Aburas, R. & Abuzahra, B., 1994. "The potential of hydropower generation in Jordan : Micro-hydropower analysis," Energy Policy, Elsevier, vol. 22(6), pages 523-530, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariano G. Ippolito & Fabio Massaro & Rossano Musca & Gaetano Zizzo, 2021. "An Original Control Strategy of Storage Systems for the Frequency Stability of Autonomous Grids with Renewable Power Generation," Energies, MDPI, vol. 14(15), pages 1-22, July.
    2. Hossam A. Gabbar & Muhammad R. Abdussami & Md. Ibrahim Adham, 2020. "Micro Nuclear Reactors: Potential Replacements for Diesel Gensets within Micro Energy Grids," Energies, MDPI, vol. 13(19), pages 1-38, October.
    3. Hiba H. Darwish & Ayman Al-Quraan, 2023. "Machine Learning Classification and Prediction of Wind Estimation Using Artificial Intelligence Techniques and Normal PDF," Sustainability, MDPI, vol. 15(4), pages 1-29, February.
    4. Akram Qashou & Sufian Yousef & Abdallah A. Smadi & Amani A. AlOmari, 2021. "Distribution system power quality compensation using a HSeAPF based on SRF and SMC features," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 976-989, October.
    5. Ayman Al-Quraan & Muhannad Al-Qaisi, 2021. "Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System," Energies, MDPI, vol. 14(16), pages 1-23, August.
    6. Woo-Jung Kim & Yu-Seok Lee & Yeong-Han Chun & Hae-Seong Jeong, 2022. "Reserve-Constrained Unit Commitment Considering Adjustable-Speed Pumped-Storage Hydropower and Its Economic Effect in Korean Power System," Energies, MDPI, vol. 15(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olukunle O. Owolabi & Kathryn Lawson & Sanhita Sengupta & Yingsi Huang & Lan Wang & Chaopeng Shen & Mila Getmansky Sherman & Deborah A. Sunter, 2022. "A Robust Statistical Analysis of the Role of Hydropower on the System Electricity Price and Price Volatility," Papers 2203.02089, arXiv.org.
    2. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    3. Su, Yufei & Kern, Jordan D. & Characklis, Gregory W., 2017. "The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems," Applied Energy, Elsevier, vol. 194(C), pages 172-183.
    4. Zhang, Xiaochun & Ma, Chun & Song, Xia & Zhou, Yuyu & Chen, Weiping, 2016. "The impacts of wind technology advancement on future global energy," Applied Energy, Elsevier, vol. 184(C), pages 1033-1037.
    5. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    6. Su, Chengguo & Cheng, Chuntian & Wang, Peilin & Shen, Jianjian & Wu, Xinyu, 2019. "Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants," Applied Energy, Elsevier, vol. 242(C), pages 285-293.
    7. Stenzel, Peter & Linssen, Jochen, 2016. "Concept and potential of pumped hydro storage in federal waterways," Applied Energy, Elsevier, vol. 162(C), pages 486-493.
    8. Domenico Campisi & Simone Gitto & Donato Morea, 2018. "Shari’ah-Compliant Finance: A Possible Novel Paradigm for Green Economy Investments in Italy," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    9. Lu, Di & Wang, Bende & Wang, Yaodong & Zhou, Huicheng & Liang, Qiuhua & Peng, Yong & Roskilly, Tony, 2015. "Optimal operation of cascade hydropower stations using hydrogen as storage medium," Applied Energy, Elsevier, vol. 137(C), pages 56-63.
    10. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    11. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    12. Ak{i}n Tac{s}cikaraou{g}lu & Ozan Erdinc{c}, 2018. "A Profit Optimization Approach Based on the Use of Pumped-Hydro Energy Storage Unit and Dynamic Pricing," Papers 1806.05211, arXiv.org.
    13. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    15. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    16. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    17. Bhattacharjee, Subhadeep & Nayak, Pabitra Kumar, 2019. "PV-pumped energy storage option for convalescing performance of hydroelectric station under declining precipitation trend," Renewable Energy, Elsevier, vol. 135(C), pages 288-302.
    18. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2016. "The importance of gas infrastructure in power systems with high wind power penetrations," Applied Energy, Elsevier, vol. 167(C), pages 294-304.
    19. Ilak, Perica & Rajšl, Ivan & Krajcar, Slavko & Delimar, Marko, 2015. "The impact of a wind variable generation on the hydro generation water shadow price," Applied Energy, Elsevier, vol. 154(C), pages 197-208.
    20. Virulkar, V.B. & Gotmare, G.V., 2016. "Sub-synchronous resonance in series compensated wind farm: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1010-1029.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4387-:d:288374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.