IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4237-d284279.html
   My bibliography  Save this article

Mobilized Mohr-Coulomb and Hoek-Brown Strength Parameters during Failure of Granite in Alxa Area in China for High-Level Radioactive Waste Disposal

Author

Listed:
  • Cheng Cheng

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Nengxiong Xu

    (School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Bo Zheng

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China)

Abstract

Strength parameters of the host rock is of paramount importance for modelling the behaviors of underground disposal repository of high-level radioactive waste (HLW). Mobilization of strength parameters should be studied for a better understanding and modelling on the mechanical behaviors of the surrounding rock, considering the effect of temperature induced by the nuclear waste. The granite samples cored from NRG01 borehole in Alxa candidate area in China for HLW disposal are treated by different temperatures (T = 20 °C, 100 °C and 200 °C), and then are used to carry out a series of uniaxial and tri-axial compression experiments under various confining pressures ( σ 3 = 0, 5, 10, 20, and 30 MPa) in this study. With the recorded axial stress—axial strain and axial stress—lateral strain curves, mobilization of both Mohr-Coulomb and Hoek-Brown strength parameters are analyzed with the increasing plastic shear strain. It has been found that NRG01 granite samples show generally similar cohesion weakening and friction strengthening behaviors, as well as the non-simultaneous mobilization of Hoek-Brown strength parameters ( m b and s ), under the effect of various treatment temperatures. Furthermore, the samples treated by higher temperatures show lower initial values of cohesion, but their initial friction angle and m b values are relatively higher. This should be mainly owing to the thermally induced cracks in the samples. This study should be helpful for a better modelling on the mechanical behaviors of NRG01 granite samples as the host rock of a possible HLW disposal repository.

Suggested Citation

  • Cheng Cheng & Nengxiong Xu & Bo Zheng, 2019. "Mobilized Mohr-Coulomb and Hoek-Brown Strength Parameters during Failure of Granite in Alxa Area in China for High-Level Radioactive Waste Disposal," Energies, MDPI, vol. 12(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4237-:d:284279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4237/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4237/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng Cheng & Xiao Li & Shouding Li & Bo Zheng, 2016. "Geomechanical Studies on Granite Intrusions in Alxa Area for High-Level Radioactive Waste Disposal," Sustainability, MDPI, vol. 8(12), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jizhe Guo & Zengchao Feng & Xuecheng Li, 2023. "Shear Strength and Energy Evolution of Granite under Real-Time Temperature," Sustainability, MDPI, vol. 15(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Cheng & Xiao Li & Nengxiong Xu & Bo Zheng, 2019. "Direct Shear Experimental Study on the Mobilized Dilation Behavior of Granite in Alxa Candidate Area for High-Level Radioactive Waste Disposal," Energies, MDPI, vol. 13(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4237-:d:284279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.