IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4105-d280897.html
   My bibliography  Save this article

Review of Detection Methods of Static Eccentricity for Interior Permanent Magnet Synchronous Machine

Author

Listed:
  • Anmol Aggarwal

    (Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA)

  • Elias G. Strangas

    (Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA)

Abstract

This paper compares the detection methods of static eccentricity in Interior Permanent Magnet Synchronous Machines (IPMSM). Four methods are discussed: The first method uses shift in the voltages in d–q plane to detect fault. The second method uses shift in peak of the incremental inductance curve for fault detection. The third method uses the combined information of harmonics present both in current and voltage to detect the fault. This makes the detection robust with respect to current controller bandwidth. Finally, the fourth method used for detection includes measuring vibrations using accelerometers. It is shown that all four methods detected static eccentricity. These methods are compared on the basis of utility of fault detection under online or offline conditions and under saturated conditions. For all four methods the machine was tested at healthy, 25% and 50% static eccentricity levels. Two-dimensional (2-D) Finite element analysis was used for simulating machine under healthy and faulty cases. The experiments were performed by controlling the machine using Labview Real-time.

Suggested Citation

  • Anmol Aggarwal & Elias G. Strangas, 2019. "Review of Detection Methods of Static Eccentricity for Interior Permanent Magnet Synchronous Machine," Energies, MDPI, vol. 12(21), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4105-:d:280897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4105/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anmol Aggarwal & Matthew Meier & Elias Strangas & John Agapiou, 2021. "Analysis of Modular Stator PMSM Manufactured Using Oriented Steel," Energies, MDPI, vol. 14(20), pages 1-19, October.
    2. Jin-Cheol Park & Soo-Hwan Park & Jae-Hyun Kim & Soo-Gyung Lee & Geun-Ho Lee & Myung-Seop Lim, 2021. "Diagnosis and Robust Design Optimization of SPMSM Considering Back EMF and Cogging Torque due to Static Eccentricity," Energies, MDPI, vol. 14(10), pages 1-19, May.
    3. Zijian Liu & Pinjia Zhang & Shan He & Jin Huang, 2021. "A Review of Modeling and Diagnostic Techniques for Eccentricity Fault in Electric Machines," Energies, MDPI, vol. 14(14), pages 1-21, July.
    4. Akilu Yunusa-Kaltungo & Ruifeng Cao, 2020. "Towards Developing an Automated Faults Characterisation Framework for Rotating Machines. Part 1: Rotor-Related Faults," Energies, MDPI, vol. 13(6), pages 1-20, March.
    5. Steven Hayslett & Elias Strangas, 2021. "Analytical Design of Sculpted Rotor Interior Permanent Magnet Machines," Energies, MDPI, vol. 14(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4105-:d:280897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.