IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i1p176-d195282.html
   My bibliography  Save this article

An Analytical Solution of the Pseudosteady State Productivity Index for the Fracture Geometry Optimization of Fractured Wells

Author

Listed:
  • Hui Gao

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Yule Hu

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Longchen Duan

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Kun Ai

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
    Downhole Operation Company, Sinopec North China Petroleum Bureau, Zhengzhou 450042, China)

Abstract

The pseudosteady state productivity index is very important for evaluating the production from oil and gas wells. It is usually used as an objective function for the optimization of fractured wells. However, there is no analytical solution for it, especially when the proppant number of the fractured well is greater than 0.1. This paper extends the established fitting solution for proppant numbers less than 0.1 by introducing an explicit expression of the shape factor. It also proposes a new asymptotic solution based on the trilinear-flow model for proppant numbers greater than 0.1. The two solutions are combined to evaluate the pseudosteady state productivity index. The evaluation results are verified by the numerical method. The new solution can be directly used for fracture geometry optimization. The optimization results are consistent with those given by the unified fracture design (UFD) method. Using the analytical solution for the pseudosteady state productivity index, optimization results can be obtained for rectangular drainage areas with arbitrary aspect ratios without requiring any interpolation or extrapolation. Moreover, the new solution provides more rigorous optimization results than the UFD method, especially for fractured horizontal wells.

Suggested Citation

  • Hui Gao & Yule Hu & Longchen Duan & Kun Ai, 2019. "An Analytical Solution of the Pseudosteady State Productivity Index for the Fracture Geometry Optimization of Fractured Wells," Energies, MDPI, vol. 12(1), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:176-:d:195282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kun Ai & Longchen Duan & Hui Gao & Guangliang Jia, 2018. "Hydraulic Fracturing Treatment Optimization for Low Permeability Reservoirs Based on Unified Fracture Design," Energies, MDPI, vol. 11(7), pages 1-23, July.
    2. Zhaobin Zhang & Xiao Li & Weina Yuan & Jianming He & Guanfang Li & Yusong Wu, 2015. "Numerical Analysis on the Optimization of Hydraulic Fracture Networks," Energies, MDPI, vol. 8(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman Lotfi & Mostafa Hosseini & Davood Aftabi & Alireza Baghbanan & Guanshui Xu, 2021. "Pumping Schedule Optimization in Acid Fracturing Treatment by Unified Fracture Design," Energies, MDPI, vol. 14(23), pages 1-23, December.
    2. Kun Ai & Longchen Duan & Hui Gao & Guangliang Jia, 2018. "Hydraulic Fracturing Treatment Optimization for Low Permeability Reservoirs Based on Unified Fracture Design," Energies, MDPI, vol. 11(7), pages 1-23, July.
    3. Yiyu Lu & Yugang Cheng & Zhaolong Ge & Liang Cheng & Shaojie Zuo & Jianyu Zhong, 2016. "Determination of Fracture Initiation Locations during Cross-Measure Drilling for Hydraulic Fracturing of Coal Seams," Energies, MDPI, vol. 9(5), pages 1-13, May.
    4. Lianchong Li & Yingjie Xia & Bo Huang & Liaoyuan Zhang & Ming Li & Aishan Li, 2016. "The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes," Energies, MDPI, vol. 9(3), pages 1-28, March.
    5. Zhaobin Zhang & Xiao Li, 2016. "Numerical Study on the Formation of Shear Fracture Network," Energies, MDPI, vol. 9(4), pages 1-16, April.
    6. Xu Yang & Boyun Guo & Xiaohui Zhang, 2019. "An Analytical Model for Capturing the Decline of Fracture Conductivity in the Tuscaloosa Marine Shale Trend from Production Data," Energies, MDPI, vol. 12(10), pages 1-16, May.
    7. Wan Cheng & Chunhua Lu & Bo Xiao, 2021. "Perforation Optimization of Intensive-Stage Fracturing in a Horizontal Well Using a Coupled 3D-DDM Fracture Model," Energies, MDPI, vol. 14(9), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:1:p:176-:d:195282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.