IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3757-d272502.html
   My bibliography  Save this article

Axisymmetric Numerical Investigation on Steam Bubble Condensation

Author

Listed:
  • Haibo Li

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Maocheng Tian

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Liangliang Tang

    (General Machinery Research Institute, Hefei 230000, China)

Abstract

In order to obtain a high-accuracy and adaptable condensation phase change model, this paper selects the Nusselt number correlation formula that Kim proposed based on the experimental data and adjusts the Nusselt number in the bubble condensation process by calculating the phase change coefficient of the Lee model in the UDF. Through the simulation and fine-tuning of the 12 groups of operating conditions, the formula for the change of the phase change coefficient of the Lee model during the bubble condensation process is obtained. The accuracy and wide applicability of the variation formula are verified by comparison with various types of experimental data. The Lee model provides a certain reference for the numerical simulation of the bubble condensation process. The numerical simulation of the condensation process of vapor bubbles is carried out by using the formula of the phase change coefficient. The error between the simulation result of the bubble volume change and the experimental result is lower than ±15%, which basically verified the reliability of the numerical model adopted in this study. The bubble condensation process has been analyzed under various operating conditions. The simulation results show that when the bubble rises, disturbance occurs with the fluid and several tiny eddies are generated on the side of the bubble. Micro-circulation of the vapor inside the bubble accelerates the heat and mass transfer rate at the gas–liquid interface. When condensation occurs, the mass transfer rate at the interface is different and the pressure inside the bubble is higher than that around it.

Suggested Citation

  • Haibo Li & Maocheng Tian & Liangliang Tang, 2019. "Axisymmetric Numerical Investigation on Steam Bubble Condensation," Energies, MDPI, vol. 12(19), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3757-:d:272502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3757/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3757-:d:272502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.