IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3555-d267958.html
   My bibliography  Save this article

Online Current Loop Tuning for Permanent Magnet Synchronous Servo Motor Drives with Deadbeat Current Control

Author

Listed:
  • Zih-Cing You

    (Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Cheng-Hong Huang

    (Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Sheng-Ming Yang

    (Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

Abstract

High bandwidths and accurate current controls are essential in high-performance permanent magnet synchronous (PMSM) servo drives. Compared with conventional proportional–integral control, deadbeat current control can considerably enhance the current control loop bandwidth. However, because the deadbeat current control performance is strongly affected by the variations in the electrical parameters, tuning the controller gains to achieve a satisfactory current response is crucial. Because of the prompt current response provided by the deadbeat controller, the gains must be tuned within a few control periods. Therefore, a fast online current loop tuning scheme is proposed in this paper. This scheme can accurately identify the controller gain in one current control period because the scheme is directly derived from the discrete-time motor model. Subsequently, the current loop is tuned by updating the deadbeat controller with the identified gains within eight current control periods or a speed control period. The experimental results prove that in the proposed scheme, the motor current can simultaneously have a critical-damped response equal to its reference in two current control periods. Furthermore, satisfactory current response is persistently guaranteed because of an accurate and short time delay required for the current loop tuning.

Suggested Citation

  • Zih-Cing You & Cheng-Hong Huang & Sheng-Ming Yang, 2019. "Online Current Loop Tuning for Permanent Magnet Synchronous Servo Motor Drives with Deadbeat Current Control," Energies, MDPI, vol. 12(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3555-:d:267958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3555/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaime A. Rohten & David N. Dewar & Pericle Zanchetta & Andrea Formentini & Javier A. Muñoz & Carlos R. Baier & José J. Silva, 2021. "Multivariable Deadbeat Control of Power Electronics Converters with Fast Dynamic Response and Fixed Switching Frequency," Energies, MDPI, vol. 14(2), pages 1-16, January.
    2. Kan Wang & Zhong Wu & Zhongyi Chu, 2020. "DC-Link Current Control with Inverter Nonlinearity Compensation for Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3555-:d:267958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.