IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3413-d264100.html
   My bibliography  Save this article

Large Eddy Simulations of the Flow Fields over Simplified Hills with Different Roughness Conditions, Slopes, and Hill Shapes: A Systematical Study

Author

Listed:
  • Zhenqing Liu

    (School of Civil Engineering & Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yiran Hu

    (School of Civil Engineering & Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Wei Wang

    (Department of Architecture and Building Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 1528550, Japan)

Abstract

Turbulent flow fields over topographies are important in the area of wind energy. The roughness, slope, and shape of a hill are important parameters affecting the flow fields over topographies. However, these effects are always examined separately. The systematic investigations of these effects are limited, the coupling between these effects is still unrevealed, and the turbulence structures as a function of these effects are still unclear. Therefore, in the present study, the flow fields over twelve simplified isolated hills with different roughness conditions, slopes, and hill shapes are examined using large eddy simulations. The mean velocities, velocity fluctuations, fractional speed-up ratios, and visualizations of the turbulent flow fields are presented. It is found that as the hill slope increases, the roughness effects become weaker, and the roughness effects will further weaken as the hill changes from 3D to 2D. In addition, the fractional speed-up ratio at the summit of rough hills can even reach to three times as large as that over the corresponding smooth hills. Furthermore, the underestimation of the ratios of spanwise fluctuation to the streamwise fluctuation by International Electrotechnical Commission (IEC) 61400-1 is quite obvious when the hill shape is 3D. Finally, coherent turbulence structures can be identified for smooth hills, and as the hill slope increases, the coherent turbulence structures will experience clear evolutions. After introducing the ground roughness, the coherent turbulence structures break into small eddies.

Suggested Citation

  • Zhenqing Liu & Yiran Hu & Wei Wang, 2019. "Large Eddy Simulations of the Flow Fields over Simplified Hills with Different Roughness Conditions, Slopes, and Hill Shapes: A Systematical Study," Energies, MDPI, vol. 12(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3413-:d:264100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3413/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Weicheng & Yang, Qingshan & Chen, Hua-Peng & Yuan, Ziting & Li, Chen & Shao, Shuai & Zhang, Jian, 2021. "Wind field characteristics over hilly and complex terrain in turbulent boundary layers," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3413-:d:264100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.