IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3405-d263852.html
   My bibliography  Save this article

Numerical Simulation of Gas Production from Gas Shale Reservoirs—Influence of Gas Sorption Hysteresis

Author

Listed:
  • Jamiu M. Ekundayo

    (Discipline of Petroleum Engineering, Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick Perry Avenue, Kensington, WA 6151, Australia)

  • Reza Rezaee

    (Discipline of Petroleum Engineering, Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, 26 Dick Perry Avenue, Kensington, WA 6151, Australia)

Abstract

The true contribution of gas desorption to shale gas production is often overshadowed by the use of adsorption isotherms for desorbed gas calculations on the assumption that both processes are identical under high pressure, high temperature conditions. In this study, three shale samples were used to study the adsorption and desorption isotherms of methane at a temperature of 80 °C, using volumetric method. The resulting isotherms were modeled using the Langmuir model, following the conversion of measured excess amounts to absolute values. All three samples exhibited significant hysteresis between the sorption processes and the desorption isotherms gave lower Langmuir parameters than the corresponding adsorption isotherms. Langmuir volume showed positive correlation with total organic carbon (TOC) content for both sorption processes. A compositional three-dimensional (3D), dual-porosity model was then developed in GEM ® (a product of the Computer Modelling Group (CMG) Ltd., Calgary, AB, Canada) to test the effect of the observed hysteresis on shale gas production. For each sample, a base scenario, corresponding to a “no-sorption” case was compared against two other cases; one with adsorption Langmuir parameters (adsorption case) and the other with desorption Langmuir parameters (desorption case). The simulation results showed that while gas production can be significantly under-predicted if gas sorption is not considered, the use of adsorption isotherms in lieu of desorption can lead to over-prediction of gas production performances.

Suggested Citation

  • Jamiu M. Ekundayo & Reza Rezaee, 2019. "Numerical Simulation of Gas Production from Gas Shale Reservoirs—Influence of Gas Sorption Hysteresis," Energies, MDPI, vol. 12(18), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3405-:d:263852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamiu M. Ekundayo & Reza Rezaee, 2019. "Volumetric Measurements of Methane-Coal Adsorption and Desorption Isotherms—Effects of Equations of State and Implication for Initial Gas Reserves," Energies, MDPI, vol. 12(10), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoqi Wang & Yanming Zhu & Yang Wang, 2020. "Fractal Characteristics of Micro- and Mesopores in the Longmaxi Shale," Energies, MDPI, vol. 13(6), pages 1-21, March.
    2. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.
    3. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3405-:d:263852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.