IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3082-d256459.html
   My bibliography  Save this article

A Si-FET-Based High Switching Frequency Three-Level LLC Resonant Converter

Author

Listed:
  • Jung-Woo Yang

    (POELSA, Power Electronics System Laboratory, Kookmin University, Seoul 100-011, Korea)

  • Sang-Kyoo Han

    (POELSA, Power Electronics System Laboratory, Kookmin University, Seoul 100-011, Korea)

Abstract

This paper highlights the proposed silicon field-effect transistor (Si-FET)-based high switching frequency three-level (TL) LLC resonant converter. It provides a detailed operational analysis of the converter; the multilevel (ML) organization of cells; voltage-balancing principles; current-balancing principles; loss comparison between Si-FETs and gallium-nitride (GaN)-FETs; and an optimal design consideration based on loss analysis. This analysis reveals that the switching losses of all power switches can be considerably reduced as the voltage across each switch can be set to half of the input voltage without an additional circuit or control strategy. Moreover, the current of each resonant inductor is automatically balanced by a proposed integrated magnetic (IM)-coupled inductor. Therefore, the operating frequency can be easily increased to near 1 MHz without applying high-performance switches. In addition, the resonant tanks of the converter can be a group of cells for multilevel operation, which indicates that the voltage across each switch is further reduced as more cells are added. Based on the results of the analysis, an optimal design consideration according to the resonant tank and switching frequency is discussed. The proposed converter was validated via a prototype converter with an input of 390 V, an output of 19.5 V/18 A, and a frequency of 1 MHz.

Suggested Citation

  • Jung-Woo Yang & Sang-Kyoo Han, 2019. "A Si-FET-Based High Switching Frequency Three-Level LLC Resonant Converter," Energies, MDPI, vol. 12(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3082-:d:256459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3082/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwa-Pyeong Park & Mina Kim & Jee-Hoon Jung, 2020. "A Comprehensive Overview in Control Algorithms for High Switching-Frequency LLC Resonant Converter," Energies, MDPI, vol. 13(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3082-:d:256459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.