IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i15p2996-d254563.html
   My bibliography  Save this article

Thermal Performance Evaluation of a Data Center Cooling System under Fault Conditions

Author

Listed:
  • Jinkyun Cho

    (Department of Building and Plant Engineering, Hanbat National University, Daejeon 34158, Korea)

  • Beungyong Park

    (Energy Division, KCL (Korea Conformity Laboratories), Jincheon 27872, Korea)

  • Yongdae Jeong

    (Energy Division, KCL (Korea Conformity Laboratories), Jincheon 27872, Korea)

Abstract

If a data center experiences a system outage or fault conditions, it becomes difficult to provide a stable and continuous information technology (IT) service. Therefore, it is critical to design and implement a backup system so that stability can be maintained even in emergency (unforeseen) situations. In this study, an actual 20 MW data center project was analyzed to evaluate the thermal performance of an IT server room during a cooling system outage under six fault conditions. In addition, a method of organizing and systematically managing operational stability and energy efficiency verification was identified for data center construction in accordance with the commissioning process. Up to a chilled water supply temperature of 17 °C and a computer room air handling unit air supply temperature of 24 °C, the temperature of the air flowing into the IT server room fell into the allowable range specified by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers standard (18–27 °C). It was possible to perform allowable operations for approximately 320 s after cooling system outage. Starting at a chilled water supply temperature of 18 °C and an air supply temperature of 25 °C, a rapid temperature increase occurred, which is a serious cause of IT equipment failure. Due to the use of cold aisle containment and designs with relatively high chilled water and air supply temperatures, there is a high possibility that a rapid temperature increase inside an IT server room will occur during a cooling system outage. Thus, the backup system must be activated within 300 s. It is essential to understand the operational characteristics of data centers and design optimal cooling systems to ensure the reliability of high-density data centers. In particular, it is necessary to consider these physical results and to perform an integrated review of the time required for emergency cooling equipment to operate as well as the backup system availability time.

Suggested Citation

  • Jinkyun Cho & Beungyong Park & Yongdae Jeong, 2019. "Thermal Performance Evaluation of a Data Center Cooling System under Fault Conditions," Energies, MDPI, vol. 12(15), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2996-:d:254563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/15/2996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/15/2996/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Jinkyun & Kim, Youngmo, 2021. "Development of modular air containment system: Thermal performance optimization of row-based cooling for high-density data centers," Energy, Elsevier, vol. 231(C).
    2. Ma, Xiaowei & Zhang, Quan & Zou, Sikai, 2022. "An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center," Energy, Elsevier, vol. 253(C).
    3. Jinkyun Cho & Jesang Woo & Beungyong Park & Taesub Lim, 2020. "A Comparative CFD Study of Two Air Distribution Systems with Hot Aisle Containment in High-Density Data Centers," Energies, MDPI, vol. 13(22), pages 1-19, November.
    4. Cho, Jinkyun & Lim, Seung-beom, 2023. "Balanced comparative assessment of thermal performance and energy efficiency for three cooling solutions in data centers," Energy, Elsevier, vol. 285(C).
    5. Peter L. Borland & Kevin McDonnell & Mary Harty, 2023. "Assessment of the Potential to Use the Expelled Heat Energy from a Typical Data Centre in Ireland for Alternative Farming Methods," Energies, MDPI, vol. 16(18), pages 1-32, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:15:p:2996-:d:254563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.