IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2625-d246611.html
   My bibliography  Save this article

Input Disturbance Suppression for Unidirectional Matrix Converter with a Stability-Enhancing Modulation Scheme

Author

Listed:
  • Jiaxing Lei

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Chaofan Wei

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

  • Shuang Feng

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China
    Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China)

Abstract

This paper proposes an input voltage disturbance suppression control strategy for the unidirectional matrix converter (UMC) with a new modulation scheme enhancing the stability. In the new scheme, the modulation index is directly, rather than reversely, proportional to the instantaneous amplitude of input filter capacitor voltages. Contrary to traditional schemes, the stability of the UMC with this new scheme is even better with the increase of the transferred active power, which is particularly suitable for applications with sinusoidal and balanced input conditions. As to the disturbed input conditions, the new scheme could introduce low-frequency harmonics into output currents. To address this issue, a feedback control strategy of output current amplitude is further proposed to eliminate the additional harmonics. Stability analysis of a UMC with the proposed modulation scheme and feedback control strategy is presented. Experimental results have verified the validity of the proposed control solution.

Suggested Citation

  • Jiaxing Lei & Chaofan Wei & Shuang Feng, 2019. "Input Disturbance Suppression for Unidirectional Matrix Converter with a Stability-Enhancing Modulation Scheme," Energies, MDPI, vol. 12(13), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2625-:d:246611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weizhang Song & Jiang Liu & Xiangdong Sun & Fenjun Wu & Daqing Gao & Youyun Wang, 2018. "Research on Commutation and Coordination Control Strategy of Excitation Power Supply Based on Bidirectional Reduced Matrix Converter for Ion Accelerator," Energies, MDPI, vol. 11(12), pages 1-21, December.
    2. Pawel Szczesniak, 2019. "Challenges and Design Requirements for Industrial Applications of AC/AC Power Converters without DC-Link," Energies, MDPI, vol. 12(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Geng & Jiahe Feng & Haojie Sha & Weixi Zhou & Zhanqing Zhou, 2022. "Harmonic Analysis and Attenuation Strategy for a Two-Stage Matrix Converter Fed by Dual-Inverter Based on Pulse Barycenter Method," Energies, MDPI, vol. 15(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuang Feng & Chaofan Wei & Jiaxing Lei, 2019. "Reduction of Prediction Errors for the Matrix Converter with an Improved Model Predictive Control," Energies, MDPI, vol. 12(15), pages 1-20, August.
    2. Nursaid Polater & Pietro Tricoli, 2022. "Technical Review of Traction Drive Systems for Light Railways," Energies, MDPI, vol. 15(9), pages 1-26, April.
    3. Remigiusz Wisniewski & Grzegorz Bazydło & Paweł Szcześniak & Iwona Grobelna & Marcin Wojnakowski, 2019. "Design and Verification of Cyber-Physical Systems Specified by Petri Nets—A Case Study of a Direct Matrix Converter," Mathematics, MDPI, vol. 7(9), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2625-:d:246611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.