IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2381-d241711.html
   My bibliography  Save this article

Fuzzy-Based Statistical Feature Extraction for Detecting Broken Rotor Bars in Line-Fed and Inverter-Fed Induction Motors

Author

Listed:
  • Cleber Gustavo Dias

    (Informatics and Knowledge Management Graduate Program (PPGI), Nove de Julho University-UNINOVE, Rua Vergueiro, Liberdade 235/249, Sao Paulo 01504-001, Brazil)

  • Luiz Carlos da Silva

    (Informatics and Knowledge Management Graduate Program (PPGI), Nove de Julho University-UNINOVE, Rua Vergueiro, Liberdade 235/249, Sao Paulo 01504-001, Brazil)

  • Ivan Eduardo Chabu

    (Department of Electrical Automation and Energy Engineering, São Paulo University, São Paulo 05508-070, Brazil)

Abstract

This paper presents the use of a fuzzy-based statistical feature extraction from the air gap disturbances for diagnosing broken rotor bars in large induction motors fed by line or an inverter. The method is based on the analysis of the magnetic flux density variation in a Hall Effect Sensor, installed between two stator slots of the motor. The proposed method combines a fuzzy inference system and a support vector machine technique for time-domain assessment of the magnetic flux density, in order to detect a single fault or multiple broken bars in the rotor. In this approach, it is possible to detect not only the existence of failures, but also its severity. Moreover, it is not necessary to estimate the slip of the motor, usually required by other methods and the damaged rotor detection was also evaluated for oscillating load conditions. Thus, the present approach can overcome some drawbacks of the traditional MCSA method, particularly in operational cases where false positive and false negative indications are more frequently. The efficiency of this approach has been proven using some computational simulation results and experimental tests to detect fully broken rotor bars in a 7.5 kW squirrel cage induction machine fed by line and an inverter.

Suggested Citation

  • Cleber Gustavo Dias & Luiz Carlos da Silva & Ivan Eduardo Chabu, 2019. "Fuzzy-Based Statistical Feature Extraction for Detecting Broken Rotor Bars in Line-Fed and Inverter-Fed Induction Motors," Energies, MDPI, vol. 12(12), pages 1-29, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2381-:d:241711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mitja Nemec & Vanja Ambrožič & Rastko Fišer & David Nedeljković & Klemen Drobnič, 2019. "Induction Motor Broken Rotor Bar Detection Based on Rotor Flux Angle Monitoring," Energies, MDPI, vol. 12(5), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Mróz & Wojciech Poprawski, 2019. "Improvement of the Thermal and Mechanical Strength of the Starting Cage of Double-Cage Induction Motors," Energies, MDPI, vol. 12(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Valtierra-Rodriguez & Juan Pablo Amezquita-Sanchez & Arturo Garcia-Perez & David Camarena-Martinez, 2019. "Complete Ensemble Empirical Mode Decomposition on FPGA for Condition Monitoring of Broken Bars in Induction Motors," Mathematics, MDPI, vol. 7(9), pages 1-19, August.
    2. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    3. Arkadiusz Duda & Maciej Sułowicz, 2020. "A New Effective Method of Induction Machine Condition Assessment Based on Zero-Sequence Voltage (ZSV) Symptoms," Energies, MDPI, vol. 13(14), pages 1-26, July.
    4. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.
    5. Arkadiusz Duda & Piotr Drozdowski, 2020. "Induction Motor Fault Diagnosis Based on Zero-Sequence Current Analysis," Energies, MDPI, vol. 13(24), pages 1-25, December.
    6. Jing Tang & Yongheng Yang & Jie Chen & Ruichang Qiu & Zhigang Liu, 2019. "Characteristics Analysis and Measurement of Inverter-Fed Induction Motors for Stator and Rotor Fault Detection," Energies, MDPI, vol. 13(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2381-:d:241711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.