IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2365-d241380.html
   My bibliography  Save this article

Life Cycle Assessment of Low-Rank Coal Utilization for Power Generation and Energy Transportation

Author

Listed:
  • Leidong Yuan

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Cheng Xu

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of MOE, North China Electric Power University, Beijing 102206, China)

Abstract

In China, the electricity load is concentrated in the east, but low-rank coal resources are concentrated in the west. To solve this contradiction, in this study, three cases for energy transmission about power system with and without solar energy were studied by life cycle assessment (LCA). Case 1 directly combusts low-rank coal to generate electricity in western China and transmits it to eastern China by grid. Cases 2 and 3 upgrade low-rank coal and transport it to eastern China for power generation. With the evaluating indicators and various stages of LCA, the impact of each case on the environment was compared clearly. The results show that over 90% of the pollutant emission comes from coal combustion throughout the life cycle. The pollutant emission of upgraded coal transportation is less than 5%. With low-rank coal upgrading then combusting, the total emission is less than that of direct combustion. In particular, with solar energy added, the emission of combustion can be further reduced. On the bases of LCA, analytic hierarchy process (AHP) was used to establish the connection of these four evaluation indicators to comprehensively evaluate the performance of the three cases through the objective function of AHP, which provided guidance for the energy transmission and utilization in the eastern and western China. Finally, sensitive analysis shows the main major factors affecting system performance on the system. The results show that the Case 3, which integrates with solar energy, performs best in the whole life scale.

Suggested Citation

  • Leidong Yuan & Cheng Xu, 2019. "Life Cycle Assessment of Low-Rank Coal Utilization for Power Generation and Energy Transportation," Energies, MDPI, vol. 12(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2365-:d:241380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    2. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    3. Wang, Jiangjiang & Zhai, Zhiqiang John & Zhang, Chunfa & Jing, Youyin, 2010. "Environmental impact analysis of BCHP system in different climate zones in China," Energy, Elsevier, vol. 35(10), pages 4208-4216.
    4. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    5. Xu, Cheng & Bai, Pu & Xin, Tuantuan & Hu, Yue & Xu, Gang & Yang, Yongping, 2017. "A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump," Applied Energy, Elsevier, vol. 200(C), pages 170-179.
    6. Xu, Cheng & Xin, Tuantuan & Xu, Gang & Li, Xiaosa & Liu, Wenyi & Yang, Yongping, 2017. "Thermodynamic analysis of a novel solar-hybrid system for low-rank coal upgrading and power generation," Energy, Elsevier, vol. 141(C), pages 1737-1749.
    7. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang & Liu, Lei, 2012. "Life cycle assessment of a solar combined cooling heating and power system in different operation strategies," Applied Energy, Elsevier, vol. 92(C), pages 843-853.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    2. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    3. Yihsuan Wu & Jian Hua, 2022. "Investigating a Retrofit Thermal Power Plant from a Sustainable Environment Perspective—A Fuel Lifecycle Assessment Case Study," Sustainability, MDPI, vol. 14(8), pages 1-26, April.
    4. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    5. Roumpedakis, Tryfon C. & Kallis, George & Magiri-Skouloudi, Despina & Grimekis, Dimitrios & Karellas, Sotirios, 2020. "Life cycle analysis of ZEOSOL solar cooling and heating system," Renewable Energy, Elsevier, vol. 154(C), pages 82-98.
    6. Si, Pengfei & Feng, Ya & Lv, Yuexia & Rong, Xiangyang & Pan, Yungang & Liu, Xichen & Yan, Jinyue, 2017. "An optimization method applied to active solar energy systems for buildings in cold plateau areas – The case of Lhasa," Applied Energy, Elsevier, vol. 194(C), pages 487-498.
    7. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Su, Bosheng & Han, Wei & Qu, Wanjun & Liu, Changchun & Jin, Hongguang, 2018. "A new hybrid photovoltaic/thermal and liquid desiccant system for trigeneration application," Applied Energy, Elsevier, vol. 226(C), pages 808-818.
    9. Jinming Jiang & Xindong Wei & Weijun Gao & Soichiro Kuroki & Zhonghui Liu, 2018. "Reliability and Maintenance Prioritization Analysis of Combined Cooling, Heating and Power Systems," Energies, MDPI, vol. 11(6), pages 1-24, June.
    10. Han, Zepeng & Han, Wei & Sui, Jun, 2024. "Exergo-environmental cost optimization and thermodynamic analysis for a solar-driven combined heating and power system," Energy, Elsevier, vol. 302(C).
    11. Chen, Yuzhu & Hua, Huilian & Xu, Jinzhao & Yun, Zhonghua & Wang, Jun & Lund, Peter D., 2022. "Techno-economic cost assessment of a combined cooling heating and power system coupled to organic Rankine cycle with life cycle method," Energy, Elsevier, vol. 239(PA).
    12. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    13. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels," Energy, Elsevier, vol. 224(C).
    14. Chen, Yuzhu & Wang, Jiangjiang & Ma, Chaofan & Gao, Yuefen, 2019. "Thermo-ecological cost assessment and optimization for a hybrid combined cooling, heating and power system coupled with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 176(C), pages 479-492.
    15. Chen, Zhidong & Hou, Yichen & Liu, Mingyu & Zhang, Guoqiang & Zhang, Kai & Zhang, Dongke & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2022. "Thermodynamic and economic analyses of sewage sludge resource utilization systems integrating Drying, Incineration, and power generation processes," Applied Energy, Elsevier, vol. 327(C).
    16. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    17. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Liu, Luyao, 2022. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of a novel partially covered parabolic trough photovoltaic thermal collector based on life cycle method," Renewable Energy, Elsevier, vol. 200(C), pages 1573-1588.
    18. Liu, Rongtang & Liu, Ming & Zhao, Yongliang & Ma, Yuegeng & Yan, Junjie, 2021. "Thermodynamic study of a novel lignite poly-generation system driven by solar energy," Energy, Elsevier, vol. 214(C).
    19. Bahlawan, Hilal & Morini, Mirko & Pinelli, Michele & Poganietz, Witold-Roger & Spina, Pier Ruggero & Venturini, Mauro, 2019. "Optimization of a hybrid energy plant by integrating the cumulative energy demand," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Xu, Cheng & Li, Xiaosa & Xin, Tuantuan & Liu, Xin & Xu, Gang & Wang, Min & Yang, Yongping, 2019. "A thermodynamic analysis and economic assessment of a modified de-carbonization coal-fired power plant incorporating a supercritical CO2 power cycle and an absorption heat transformer," Energy, Elsevier, vol. 179(C), pages 30-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2365-:d:241380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.