IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2289-d240105.html
   My bibliography  Save this article

Analysis and Control of Fault Ride-Through Capability Improvement for Wind Turbine Based on a Permanent Magnet Synchronous Generator Using an Interval Type-2 Fuzzy Logic System

Author

Listed:
  • Altan Gencer

    (Department of Electrical and Electronics Engineering, Nevsehir H.B:V. University, Nevsehir 50300, Turkey)

Abstract

Recently, wind energy conversion systems in renewable energy sources have attracted attention due to their effective application. Wind turbine systems have a complex structure; however, traditional control systems are inadequate in answering the demands of complex systems. Therefore, expert control systems are applied to wind turbines, such as type-1 and interval type-2 fuzzy logic control (IT-2 FLC) systems. An IT-2 FLC system is used to solve the complexity of the wind turbine system and increases the efficiency of the wind turbine. This paper proposes a new control approach using the IT-2 FLC method applied to a wind turbine based on a permanent magnet synchronous generator (PMSG) to improve the transient stability during grid faults. An IT-2 FLC was designed to enhance the fault ride-through performance of a wind turbine and was implemented to control the machine side converter and grid side converter of a wind turbine. The proposed algorithm performance of a wind turbine based on a PMSG was investigated for different types of grid fault. The analysis results verify that the interval type-2 fuzzy logic control system is robustly utilized under different operational conditions.

Suggested Citation

  • Altan Gencer, 2019. "Analysis and Control of Fault Ride-Through Capability Improvement for Wind Turbine Based on a Permanent Magnet Synchronous Generator Using an Interval Type-2 Fuzzy Logic System," Energies, MDPI, vol. 12(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2289-:d:240105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2289/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2289/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hooman Ghaffarzadeh & Ali Mehrizi-Sani, 2020. "Review of Control Techniques for Wind Energy Systems," Energies, MDPI, vol. 13(24), pages 1-19, December.
    2. Mojtaba Nasiri & Saleh Mobayen & Behdad Faridpak & Afef Fekih & Arthur Chang, 2020. "Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies," Energies, MDPI, vol. 13(24), pages 1-18, December.
    3. Aphrodis Nduwamungu & Etienne Ntagwirumugara & Francis Mulolani & Waqar Bashir, 2020. "Fault Ride through Capability Analysis (FRT) in Wind Power Plants with Doubly Fed Induction Generators for Smart Grid Technologies," Energies, MDPI, vol. 13(16), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2289-:d:240105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.