IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2092-d236209.html
   My bibliography  Save this article

A Modified Blasingame Production Analysis Method for Vertical Wells Considering the Quadratic Gradient Term

Author

Listed:
  • Junjie Ren

    (School of Sciences, Southwest Petroleum University, Chengdu 610500, Sichuan, China)

  • Qiao Zheng

    (School of Sciences, Southwest Petroleum University, Chengdu 610500, Sichuan, China)

  • Chunlan Zhao

    (School of Sciences, Southwest Petroleum University, Chengdu 610500, Sichuan, China)

Abstract

Fluid flow in actual oil reservoirs is consistent with material balance, which should be described by the nonlinear governing equation, including the quadratic gradient term (QGT). Nonetheless, the widely-used Blasingame production decline analysis (BPDA) is established based on the conventional governing equation neglecting the QGT, which leads to some errors in the interpretation of production data under some conditions, such as wells producing at a large drawdown pressure. This work extends BPDA to incorporate the effect of the QGT by modifying material balance time and normalized rate functions. The step-by-step procedure for the proposed production decline analysis (PPDA) is presented and compared with that for BPDA. The simulated cases for various production scenarios are used to validate PPDA. A field case is employed to show the applicability of PPDA in practice. Comparisons between the results obtained by BPDA and PPDA are analyzed in detail. It is found that BPDA overestimates the permeability and original oil-in-place, while PPDA works well. Compared with BPDA, PPDA can be employed to obtain more accurate original oil-in-place and reservoir properties, especially when wells produce at a large drawdown pressure.

Suggested Citation

  • Junjie Ren & Qiao Zheng & Chunlan Zhao, 2019. "A Modified Blasingame Production Analysis Method for Vertical Wells Considering the Quadratic Gradient Term," Energies, MDPI, vol. 12(11), pages 1-33, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2092-:d:236209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Youwei He & Shiqing Cheng & Zhenhua Rui & Jiazheng Qin & Liang Fu & Jianguo Shi & Yang Wang & Dingyi Li & Shirish Patil & Haiyang Yu & Jun Lu, 2018. "An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells with Non-Uniform Hydraulic Fracture Properties," Energies, MDPI, vol. 11(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Male, Frank & Jensen, Jerry L., 2020. "Three Common Statistical Missteps We Make in Reservoir Characterization," Earth Arxiv q7nw6, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gang Hu & Guorong Wang & Liming Dai & Peng Zhang & Ming Li & Yukun Fu, 2018. "Sealing Failure Analysis on V-Shaped Sealing Rings of an Inserted Sealing Tool Used for Multistage Fracturing Processes," Energies, MDPI, vol. 11(6), pages 1-11, June.
    2. Chengwei Zhang & Shiqing Cheng & Yang Wang & Gang Chen & Ke Yan & Yongda Ma, 2022. "Rate Transient Behavior of Wells Intercepting Non-Uniform Fractures in a Layered Tight Gas Reservoir," Energies, MDPI, vol. 15(15), pages 1-14, August.
    3. Galina Yudashkina & Sergey Pobochy, 2007. "Regulation of the electricity sector in Russia: regional aspects (in Russian)," Quantile, Quantile, issue 2, pages 107-130, March.
    4. Xu Yang & Boyun Guo, 2019. "A Data-Driven Workflow Approach to Optimization of Fracture Spacing in Multi-Fractured Shale Oil Wells," Energies, MDPI, vol. 12(10), pages 1-14, May.
    5. Mingxian Wang & Xiangji Dou & Ruiqing Ming & Weiqiang Li & Wenqi Zhao & Chengqian Tan, 2021. "Semi-Analytical Rate Decline Solutions for a Refractured Horizontal Well Intercepted by Multiple Reorientation Fractures with Fracture Face Damage in an Anisotropic Tight Reservoir," Energies, MDPI, vol. 14(22), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2092-:d:236209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.