Reducing Tower Fatigue through Blade Back Twist and Active Pitch-to-Stall Control Strategy for a Semi-Submersible Floating Offshore Wind Turbine
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Macquart, Terence & Maheri, Alireza, 2019. "A stall-regulated wind turbine design to reduce fatigue," Renewable Energy, Elsevier, vol. 133(C), pages 964-970.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kwansu Kim & Hyunjong Kim & Hyungyu Kim & Jaehoon Son & Jungtae Kim & Jongpo Park, 2021. "Resonance Avoidance Control Algorithm for Semi-Submersible Floating Offshore Wind Turbine," Energies, MDPI, vol. 14(14), pages 1-17, July.
- Arash E. Samani & Jeroen D. M. De Kooning & Nezmin Kayedpour & Narender Singh & Lieven Vandevelde, 2020. "The Impact of Pitch-To-Stall and Pitch-To-Feather Control on the Structural Loads and the Pitch Mechanism of a Wind Turbine," Energies, MDPI, vol. 13(17), pages 1-21, September.
- López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Arabgolarcheh, Alireza & Jannesarahmadi, Sahar & Benini, Ernesto, 2022. "Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method," Renewable Energy, Elsevier, vol. 185(C), pages 871-887.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Arash E. Samani & Jeroen D. M. De Kooning & Nezmin Kayedpour & Narender Singh & Lieven Vandevelde, 2020. "The Impact of Pitch-To-Stall and Pitch-To-Feather Control on the Structural Loads and the Pitch Mechanism of a Wind Turbine," Energies, MDPI, vol. 13(17), pages 1-21, September.
More about this item
Keywords
floating offshore wind turbine (FOWT); pitch-to-stall; blade back twist; tower fore–aft moments; negative damping; blade flapwise moment; tower axial fatigue life;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1897-:d:232315. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.