IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1897-d232315.html
   My bibliography  Save this article

Reducing Tower Fatigue through Blade Back Twist and Active Pitch-to-Stall Control Strategy for a Semi-Submersible Floating Offshore Wind Turbine

Author

Listed:
  • Dawn Ward

    (Department of Energy and Power, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK)

  • Maurizio Collu

    (Department of Naval Architecture, Ocean & Marine Engineering, University of Strathclyde, Henry Dyer Building, 100 Montrose Street, Glasgow G4 0LZ, UK)

  • Joy Sumner

    (Centre for Thermal Energy Systems and Materials, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK)

Abstract

The necessity of producing more electricity from renewable sources has been driven predominantly by the need to prevent irreversible climate chance. Currently, industry is looking towards floating offshore wind turbine solutions to form part of their future renewable portfolio. However, wind turbine loads are often increased when mounted on a floating rather than fixed platform. Negative damping must also be avoided to prevent tower oscillations. By presenting a turbine actively pitching-to-stall, the impact on the tower fore–aft bending moment of a blade with back twist towards feather as it approaches the tip was explored, utilizing the time domain FAST v8 simulation tool. The turbine was coupled to a floating semisubmersible platform, as this type of floater suffers from increased fore–aft oscillations of the tower, and therefore could benefit from this alternative control approach. Correlation between the responses of the blade’s flapwise bending moment and the tower base’s fore–aft moment was observed with this back-twisted pitch-to-stall blade. Negative damping was also avoided by utilizing a pitch-to-stall control strategy. At 13 and 18 m/s mean turbulent winds, a 20% and 5.8% increase in the tower axial fatigue life was achieved, respectively. Overall, it was shown that the proposed approach seems to be effective in diminishing detrimental oscillations of the power output and in enhancing the tower axial fatigue life.

Suggested Citation

  • Dawn Ward & Maurizio Collu & Joy Sumner, 2019. "Reducing Tower Fatigue through Blade Back Twist and Active Pitch-to-Stall Control Strategy for a Semi-Submersible Floating Offshore Wind Turbine," Energies, MDPI, vol. 12(10), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1897-:d:232315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Macquart, Terence & Maheri, Alireza, 2019. "A stall-regulated wind turbine design to reduce fatigue," Renewable Energy, Elsevier, vol. 133(C), pages 964-970.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwansu Kim & Hyunjong Kim & Hyungyu Kim & Jaehoon Son & Jungtae Kim & Jongpo Park, 2021. "Resonance Avoidance Control Algorithm for Semi-Submersible Floating Offshore Wind Turbine," Energies, MDPI, vol. 14(14), pages 1-17, July.
    2. Arash E. Samani & Jeroen D. M. De Kooning & Nezmin Kayedpour & Narender Singh & Lieven Vandevelde, 2020. "The Impact of Pitch-To-Stall and Pitch-To-Feather Control on the Structural Loads and the Pitch Mechanism of a Wind Turbine," Energies, MDPI, vol. 13(17), pages 1-21, September.
    3. López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Arabgolarcheh, Alireza & Jannesarahmadi, Sahar & Benini, Ernesto, 2022. "Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method," Renewable Energy, Elsevier, vol. 185(C), pages 871-887.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arash E. Samani & Jeroen D. M. De Kooning & Nezmin Kayedpour & Narender Singh & Lieven Vandevelde, 2020. "The Impact of Pitch-To-Stall and Pitch-To-Feather Control on the Structural Loads and the Pitch Mechanism of a Wind Turbine," Energies, MDPI, vol. 13(17), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1897-:d:232315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.