Data-Driven Framework to Predict the Rheological Properties of CaCl 2 Brine-Based Drill-in Fluid Using Artificial Neural Network
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Salaheldin Elkatatny & Tamer Moussa & Abdulazeez Abdulraheem & Mohamed Mahmoud, 2018. "A Self-Adaptive Artificial Intelligence Technique to Predict Oil Pressure Volume Temperature Properties," Energies, MDPI, vol. 11(12), pages 1-14, December.
- George Parapuram & Mehdi Mokhtari & Jalel Ben Hmida, 2018. "An Artificially Intelligent Technique to Generate Synthetic Geomechanical Well Logs for the Bakken Formation," Energies, MDPI, vol. 11(3), pages 1-26, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salaheldin Elkatatny, 2019. "Real-Time Prediction of the Rheological Properties of Water-Based Drill-In Fluid Using Artificial Neural Networks," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
- Miltiadis D. Lytras & Kwok Tai Chui, 2019. "The Recent Development of Artificial Intelligence for Smart and Sustainable Energy Systems and Applications," Energies, MDPI, vol. 12(16), pages 1-7, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saad Alatefi & Abdullah M. Almeshal, 2021. "A New Model for Estimation of Bubble Point Pressure Using a Bayesian Optimized Least Square Gradient Boosting Ensemble," Energies, MDPI, vol. 14(9), pages 1-21, May.
- Dongmei Ding & Yongbin Wu & Xueling Xia & Weina Li & Jipeng Zhang & Pengcheng Liu, 2022. "Method of Geomechanical Parameter Determination and Volumetric Fracturing Factor Simulation under Highly Stochastic Geologic Conditions," Energies, MDPI, vol. 16(1), pages 1-20, December.
- Seyedalireza Khatibi & Mehdi Ostadhassan & David Tuschel & Thomas Gentzis & Humberto Carvajal-Ortiz, 2018. "Evaluating Molecular Evolution of Kerogen by Raman Spectroscopy: Correlation with Optical Microscopy and Rock-Eval Pyrolysis," Energies, MDPI, vol. 11(6), pages 1-19, May.
- Fatick Nath & Sarker Monojit Asish & Deepak Ganta & Happy Rani Debi & Gabriel Aguirre & Edgardo Aguirre, 2022. "Artificial Intelligence Model in Predicting Geomechanical Properties for Shale Formation: A Field Case in Permian Basin," Energies, MDPI, vol. 15(22), pages 1-19, November.
More about this item
Keywords
mud rheology; drill-in fluid; artificial neural network; Marsh funnel; plastic viscosity; yield point;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1880-:d:231928. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.