IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1841-d231328.html
   My bibliography  Save this article

Analysis of Initiation Angle for Fracture Propagation Considering Stress Interference

Author

Listed:
  • Xia Xiao

    (Department of City Construction, Wenhua College, Wuhan 430074, China)

  • Cong Xiao

    (Faculty of Applied Mathematics, Delft University of Technology, 2628CD Delft, the Netherlands)

Abstract

Stress interference of multiplied fractures has significant influences on the propagation behavior of hydraulic fractures in roads, bridges, clay formations, and other forms of engineering. This paper establishes a crossing criterion and initiation angle model with comprehensive consideration of remote stress, stress intensity near the tip of fracture, and stress interference of multiplied fractures. Compared with the existing crossing criterion and initiation angle model, the ability to cross natural fractures decreases. Furthermore, the secondary initiation angle decreases with consideration of multiplied fracture propagation. The length of hydraulic fractures and natural fractures has little influence on the secondary initiation angle. With the increase in fracture space, the stress interference between fractures decreases, and as a result, the initiation angle begins to increase and then decrease. Differing from the propagation behavior of single fracture, the initiation angle basically does not vary with the increasing of net pressure under the high intersection angle between hydraulic fractures and natural fractures. Under a low intersection angle condition, the bigger the net pressure is, the smaller the initiation angle is. These results have great significance when analyzing the propagation behavior of multiplied fractures in real-world applications.

Suggested Citation

  • Xia Xiao & Cong Xiao, 2019. "Analysis of Initiation Angle for Fracture Propagation Considering Stress Interference," Energies, MDPI, vol. 12(10), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1841-:d:231328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1841/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Cui & Zhongmin Xiao & Jie Yang & Mi Tian & Qiang Zhang & Ziming Feng, 2022. "Multi-Crack Dynamic Interaction Effect on Oil and Gas Pipeline Weld Joints Based on VCCT," Energies, MDPI, vol. 15(8), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1841-:d:231328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.