IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p66-d193332.html
   My bibliography  Save this article

Active Hybrid Solid State Transformer Based on Multi-Level Converter Using SiC MOSFET

Author

Listed:
  • Chun-gi Yun

    (Department of Electrical Engineering, Konkuk University, Seoul 05029, Korea)

  • Younghoon Cho

    (Department of Electrical Engineering, Konkuk University, Seoul 05029, Korea)

Abstract

As the types of loads have been diversified and demand has increased, conventional distribution transformers are difficult to maintain the constant voltage against voltage drop along with distance, grid voltage swell/sag, and various loads. Also, it is hard to control the power flow when connecting renewable energy sources. Active hybrid solid state transformer (AHSST) is application to keep the voltage and power quality. AHSST is a system that combines conventional distribution transformer and converter. Accordingly, it can be applied directly to distribution infrastructure and it has both the advantages of solid state transformer (SST) and conventional transformer. AHSST is capable of active voltage and current control and power factor control. It has a simpler structure than SST and it can perform the same performance with the lower rating converter. This paper presents two stage AHSST system based on multi-level converter. The converter is composed of the back-to-back converter using silicon carbide (SiC) metal-oxide semiconductor field effect transistor (MOSFET). Proposed system has a wider voltage and power flow control range, lower filter size, and simpler control sequence than existing AHSST systems. The performance of the proposed system was verified by prototype system experiments.

Suggested Citation

  • Chun-gi Yun & Younghoon Cho, 2018. "Active Hybrid Solid State Transformer Based on Multi-Level Converter Using SiC MOSFET," Energies, MDPI, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:66-:d:193332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/66/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/66/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Farnesi & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2019. "Solid-State Transformers in Locomotives Fed through AC Lines: A Review and Future Developments," Energies, MDPI, vol. 12(24), pages 1-29, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:66-:d:193332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.