IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p48-d193013.html
   My bibliography  Save this article

A New Method and Application of Full 3D Numerical Simulation for Hydraulic Fracturing Horizontal Fracture

Author

Listed:
  • Bing Xu

    (School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Yikun Liu

    (School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Yumei Wang

    (Downhole Operation Company, Daqing Oilfield Corp. Ltd., Daqing 163000 China)

  • Guang Yang

    (Downhole Operation Company, Daqing Oilfield Corp. Ltd., Daqing 163000 China)

  • Qiannan Yu

    (School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

  • Fengjiao Wang

    (School of Petroleum Engineering, Northeast Petroleum University, Daqing 163318, China)

Abstract

The numerical simulation of hydraulic fracturing fracture propagation is the core content of hydraulic fracturing design and construction. Its simulation results directly affect the effect of fracturing, and can effectively guide the fracturing construction plan and reduce the construction risk. At present, two-dimensional or quasi-three-dimensional models are mainly used, but most of them are used to simulate the vertical fracture of hydraulic fracturing. There are errors in the application process. In this paper, a three-dimensional mathematical model, including an elastic rock mechanics equation and a material flow continuity equation, is established to simulate horizontal fracture propagation in shallow reservoirs. The emphasis of this paper is to propose a new method for solving equations. The basic idea of the iteration method has been proposed by previous scholars: Firstly, assuming that the initial pressure of each point in the fracture is uniform, the fracture height of each initial point can be obtained by using Equation (20). Using the initial height values, the pressure values at each point of continuous variation are calculated by Equation (16), and then the new fracture height values are obtained by Equation (20). Because of the equal initial pressure, this method leads to too many iterations in the later stages, which makes the calculation more complicated. In this paper, a new Picca iteration method is proposed. The iteration parameters are changed sequentially. Firstly, the distribution value of fracture height is assumed. Then, the pressure distribution value is calculated according to Equation (16). Then, the new distribution value of fracture height is obtained by bringing the obtained pressure distribution value into Equation (20). Then, the new distribution value of the fracture height is calculated according to Equation (16). The pressure distribution value completes an iteration process until the iteration satisfies the convergence condition. In addition, Sneddon’s model is introduced into the hypothesis of fracture height to obtain the maximum fracture height and assume that the initial fracture profile is a parabola. Finally, the proposed method can rapidly improve the convergence rate. Next, on the basis of investigating the solutions of previous equations, the Galerkin finite element method is used to solve the above equations. The new Picard iteration sequence method is applied to solve the height and pressure at different points in the fracture. By calculating the stress intensity factor, we can judge whether the fracture continues to extend or not, and then simulate the full three-dimensional horizontal fracture of the hydraulic fracturing expansion process. The infiltration process of three types of oil reservoirs in Daqing Changyuan oilfield is simulated. The results show that during the initial fracture stage, the radius and height of fractures increase rapidly, and the rate of increase slows down with the increase of construction time. The height and net pressure of each point in the fracture are unequal. The height and net pressure of the fracture in the wellbore reach the maximum, and gradually decrease to the front of the fracture. Compared with conventional fracturing, the fracturing-flooding percolation process has the characteristics of short fracture-making and large vertical percolation distance, which can greatly increase the swept volume of flooding fluid and thus enhance oil recovery. With the increase in the rock modulus of elasticity, the radius of fractures decreases and the height of fractures increases. With the increase in construction displacement, the radius of fractures hardly changes, the height of fractures increases, and the vertical infiltration distance of the fractures increases. It is suggested that the construction displacement should be 4.0 m 3 /min. In the range of fracturing fluid viscosity in the studied block, with the change of fracturing fluid viscosity, the change of fracture radius and height is not obvious. In order to further increase sweep volume, the fracturing fluid viscosity should be further reduced.

Suggested Citation

  • Bing Xu & Yikun Liu & Yumei Wang & Guang Yang & Qiannan Yu & Fengjiao Wang, 2018. "A New Method and Application of Full 3D Numerical Simulation for Hydraulic Fracturing Horizontal Fracture," Energies, MDPI, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:48-:d:193013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/48/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/48/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:48-:d:193013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.