IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2269-d166388.html
   My bibliography  Save this article

Thermal Conductivity of Korean Compacted Bentonite Buffer Materials for a Nuclear Waste Repository

Author

Listed:
  • Seok Yoon

    (Division of Radioactive Waste Disposal Research, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea)

  • WanHyoung Cho

    (Division of Radioactive Waste Disposal Research, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea)

  • Changsoo Lee

    (Division of Radioactive Waste Disposal Research, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea)

  • Geon-Young Kim

    (Division of Radioactive Waste Disposal Research, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea)

Abstract

Engineered barrier system (EBS) has been proposed for the disposal of high-level waste (HLW). An EBS is composed of a disposal canister with spent fuel, a buffer material, backfill material, and a near field rock mass. The buffer material is especially essential to guarantee the safe disposal of HLW, and plays the very important role of protecting the waste and canister against any external mechanical impact. The buffer material should also possess high thermal conductivity, to release as much decay heat as possible from the spent fuel. Its thermal conductivity is a crucial property since it determines the temperature retained from the decay heat of the spent fuel. Many studies have investigated the thermal conductivity of bentonite buffer materials and many types of soils. However, there has been little research or overall evaluation of the thermal conductivity of Korean Ca-type bentonite buffer materials. This paper investigated and analyzed the thermal conductivity of Korean Ca-type bentonite buffer materials produced in Gyeongju, and compared the results with various characteristics of Na-type bentonites, such as MX80 and Kunigel. Additionally, this paper suggests various predictive models to predict the thermal conductivity of Korean bentonite buffer materials considering various influential independent variables, and compared these with results for MX80 and Kunigel.

Suggested Citation

  • Seok Yoon & WanHyoung Cho & Changsoo Lee & Geon-Young Kim, 2018. "Thermal Conductivity of Korean Compacted Bentonite Buffer Materials for a Nuclear Waste Repository," Energies, MDPI, vol. 11(9), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2269-:d:166388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2269/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaming Wang & Hailong He & Miles Dyck & Jialong Lv, 2020. "A Review and Evaluation of Predictive Models for Thermal Conductivity of Sands at Full Water Content Range," Energies, MDPI, vol. 13(5), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2269-:d:166388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.