IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2250-d166050.html
   My bibliography  Save this article

The Stability Analysis of a Multi-Port Single-Phase Solid-State Transformer in the Electromagnetic Timescale

Author

Listed:
  • Rui Wang

    (College of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

  • Qiuye Sun

    (College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
    State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110004, China)

  • Qifu Cheng

    (College of Information Science and Engineering, Northeastern University, Shenyang 110004, China
    State Grid Shenyang Electric Power Supply Company, Shenyang 110004, China)

  • Dazhong Ma

    (College of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

Abstract

This paper proposes an overall practical stability assessment for a multi-port single-phase solid-state transformer (MS3T) in the electromagnetic timescale. When multiple stable subsystems are combined into one MS3T, the newly formed MS3T has a certain possibility to be unstable. Thus, this paper discusses the stability assessment of the MS3T in detail. First and foremost, the structure of the MS3T and its three stage control strategies are proposed. Furthermore, the stability analysis of each of the MS3T’s subsystems is achieved through the closed loop transfer function of each subsystem, respectively, including an AC-DC front-end side converter, dual active bridge (DAB) with a high-frequency (HF) or medium-frequency (MF) transformer, and back-end side incorporating DC-AC and dc-dc converters. Furthermore, the practical impedance stability criterion in the electromagnetic timescale, which only requires two current sensors and one external high-bandwidth small-signal sinusoidal perturbation current source, is proposed by the Gershgorin theorem and Kirchhoff laws. Finally, the overall stability assessment, based on a modified impedance criterion for the MS3T is investigated. The overall practical stability assessment of the MS3T can be validated through extensive simulation and hardware results.

Suggested Citation

  • Rui Wang & Qiuye Sun & Qifu Cheng & Dazhong Ma, 2018. "The Stability Analysis of a Multi-Port Single-Phase Solid-State Transformer in the Electromagnetic Timescale," Energies, MDPI, vol. 11(9), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2250-:d:166050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2250/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2250/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyeok-Jin Yun & Ho-Sung Kim & Myoungho Kim & Ju-Won Baek & Hee-Je Kim, 2018. "A DAB Converter with Common-Point-Connected Winding Transformers Suitable for a Single-Phase 5-Level SST System," Energies, MDPI, vol. 11(4), pages 1-16, April.
    2. Peng Shen & Lin Guan & Zhenlin Huang & Liang Wu & Zetao Jiang, 2018. "Active-Current Control of Large-Scale Wind Turbines for Power System Transient Stability Improvement Based on Perturbation Estimation Approach," Energies, MDPI, vol. 11(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Farnesi & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2019. "Solid-State Transformers in Locomotives Fed through AC Lines: A Review and Future Developments," Energies, MDPI, vol. 12(24), pages 1-29, December.
    2. Yuyang Li & Qiuye Sun & Danlu Wang & Sen Lin, 2019. "A Virtual Inertia-Based Power Feedforward Control Strategy for an Energy Router in a Direct Current Microgrid Application," Energies, MDPI, vol. 12(3), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Wang & Guowei Cai & Deyou Yang & Lixin Wang & Zhiye Yu, 2019. "Investigation on Dynamic Response of Grid-Tied VSC During Electromechanical Oscillations of Power Systems," Energies, MDPI, vol. 13(1), pages 1-16, December.
    2. Lin, Jianing & Bao, Minglei & Liang, Ziyang & Sang, Maosheng & Ding, Yi, 2022. "Spatio-temporal evaluation of electricity price risk considering multiple uncertainties under extreme cold weather," Applied Energy, Elsevier, vol. 328(C).
    3. Stefano Farnesi & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2019. "Solid-State Transformers in Locomotives Fed through AC Lines: A Review and Future Developments," Energies, MDPI, vol. 12(24), pages 1-29, December.
    4. Min-Soo Kim & Do-Hyun Kim & Dong-Keun Jeong & Jang-Mok Kim & Hee-Je Kim, 2020. "Soft Start-Up Control Strategy for Dual Active Bridge Converter with a Supercapacitor," Energies, MDPI, vol. 13(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2250-:d:166050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.