IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p1982-d160877.html
   My bibliography  Save this article

Experimental Assessment of a Methodology for the Indirect in-Cylinder Pressure Evaluation in Four-Stroke Internal Combustion Engines

Author

Listed:
  • Luca Romani

    (Department of Industrial Engineering (DIEF), Università degli Studi di Firenze, via di Santa Marta 3, 50139 Firenze, Italy)

  • Alessandro Bianchini

    (Department of Industrial Engineering (DIEF), Università degli Studi di Firenze, via di Santa Marta 3, 50139 Firenze, Italy)

  • Giovanni Vichi

    (Yanmar R&D Europe, Viale Galileo 3/A, 50125 Firenze, Italy)

  • Alessandro Bellissima

    (Yanmar R&D Europe, Viale Galileo 3/A, 50125 Firenze, Italy)

  • Giovanni Ferrara

    (Department of Industrial Engineering (DIEF), Università degli Studi di Firenze, via di Santa Marta 3, 50139 Firenze, Italy)

Abstract

Recent innovations in engine control and diagnostics are providing room for development of innovative combustion approaches (e.g., low-temperature combustion) able to minimize the creation of pollutants. To ensure the constant fulfillment of the prescribed thermodynamic conditions, however, a fast real-time monitoring of the in-cylinder pressure is needed. To this end, dynamic pressure sensors, flush-mounted on the cylinder head, are commonly used. With this approach, the measurement accuracy is high, but the durability is limited by the harsh working conditions. The installation on the cylinder head is also complex. The development of robust and effective indirect measurement systems could then represent the enabler of a further development of this technology. In the present study, an innovative methodology to measure the in-cylinder pressure has been conceived and extensively tested on a four-stroke single-cylinder engine. The proposed approach is based on the analysis of the mechanical stress on the engine studs by means of a piezoelectric strain washer. This solution allows the user for a rapid and cost-effective sensor installation, described in the paper along with the signal post-processing techniques. Results showed good accuracy and robustness of the methodology, making the results of practical use for engine control.

Suggested Citation

  • Luca Romani & Alessandro Bianchini & Giovanni Vichi & Alessandro Bellissima & Giovanni Ferrara, 2018. "Experimental Assessment of a Methodology for the Indirect in-Cylinder Pressure Evaluation in Four-Stroke Internal Combustion Engines," Energies, MDPI, vol. 11(8), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1982-:d:160877
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/1982/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/1982/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frederico de Oliveira Assuncao & Luiz Eduardo Borges-da-Silva & Helcio Francisco Villa-Nova & Erik Leandro Bonaldi & Levy Ely Lacerda Oliveira & Germano Lambert-Torres & Carlos Eduardo Teixeira & Wils, 2021. "Reduced Scale Laboratory for Training and Research in Condition-Based Maintenance Strategies for Combustion Engine Power Plants and a Novel Method for Monitoring of Inlet and Exhaust Valves," Energies, MDPI, vol. 14(19), pages 1-23, October.
    2. Alessandro Brusa & Nicolò Cavina & Nahuel Rojo & Jacopo Mecagni & Enrico Corti & Vittorio Ravaglioli & Matteo Cucchi & Nicola Silvestri, 2021. "Development and Experimental Validation of an Adaptive, Piston-Damage-Based Combustion Control System for SI Engines: Part 1—Evaluating Open-Loop Chain Performance," Energies, MDPI, vol. 14(17), pages 1-27, August.
    3. Turki Alsuwian & Muhammad Tayyeb & Arslan Ahmed Amin & Muhammad Bilal Qadir & Saleh Almasabi & Mohammed Jalalah, 2022. "Design of a Hybrid Fault-Tolerant Control System for Air–Fuel Ratio Control of Internal Combustion Engines Using Genetic Algorithm and Higher-Order Sliding Mode Control," Energies, MDPI, vol. 15(15), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1982-:d:160877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.