IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1873-d158613.html
   My bibliography  Save this article

Derivative Method Based Orientation Detection of Substation Grounding Grid

Author

Listed:
  • Aamir Qamar

    (Department of Electrical Engineering, COMSATS University, Wah Campus, Wah Cantt 47040, Pakistan
    State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Muhammad Umair

    (Department of Electrical Engineering, COMSATS University, Wah Campus, Wah Cantt 47040, Pakistan)

  • Fan Yang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Muhammad Uzair

    (Department of Electrical Engineering, COMSATS University, Wah Campus, Wah Cantt 47040, Pakistan)

  • Zeeshan Kaleem

    (Department of Electrical Engineering, COMSATS University, Wah Campus, Wah Cantt 47040, Pakistan)

Abstract

The grounding grid is a key part of substation protection, which provides safety to personnel and equipment under normal as well as fault conditions. Currently, the topology of a grounding grid is determined by assuming that its orientation is parallel to the plane of earth. However, in practical scenarios, the assumed orientation may not coincide with the actual orientation of the grounding grid. Hence, currently employed methods for topology detection fails to produce the desired results. Therefore, accurate detection of grounding grid orientation is mandatory for measuring its topology accurately. In this paper, we propose a derivative method for orientation detection of grounding grid in high voltage substations. The proposed method is applicable to both equally and unequally spaced grounding grids. Furthermore, our method can also determine the orientation of grounding grid in the challenging case when a diagonal branch is present in the mesh. The proposed method is based on the fact that the distribution of magnetic flux density is perpendicular to the surface of the earth when a current is injected into the grid through a vertical conductor. Taking the third order derivative of the magnetic flux density, the main peak coinciding with the position of underground conductor is accurately obtained. Thus, the main peak describes the orientation of buried conductor of grounding grid. Simulations are performed using Comsol Multiphysics 5.0 to demonstrate the accuracy of the proposed method. Our results demonstrate that the proposed method calculate the orientation of grounding grid with high accuracy. We also investigate the effect of varying critical parameters of our method.

Suggested Citation

  • Aamir Qamar & Muhammad Umair & Fan Yang & Muhammad Uzair & Zeeshan Kaleem, 2018. "Derivative Method Based Orientation Detection of Substation Grounding Grid," Energies, MDPI, vol. 11(7), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1873-:d:158613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan Yang & Yongan Wang & Manling Dong & Xiaokuo Kou & Degui Yao & Xing Li & Bing Gao & Irfan Ullah, 2017. "A Cycle Voltage Measurement Method and Application in Grounding Grids Fault Location," Energies, MDPI, vol. 10(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Lowczowski & Jozef Lorenc & Andrzej Tomczewski & Zbigniew Nadolny & Jozef Zawodniak, 2020. "Monitoring of MV Cable Screens, Cable Joints and Earthing Systems Using Cable Screen Current Measurements," Energies, MDPI, vol. 13(13), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Li & Fan Yang & Julan Ming & Ammad Jadoon & Sheng Han, 2018. "Imaging the Corrosion in Grounding Grid Branch with Inner-Source Electrical Impedance Tomography," Energies, MDPI, vol. 11(7), pages 1-13, July.
    2. Krzysztof Lowczowski & Jozef Lorenc & Andrzej Tomczewski & Zbigniew Nadolny & Jozef Zawodniak, 2020. "Monitoring of MV Cable Screens, Cable Joints and Earthing Systems Using Cable Screen Current Measurements," Energies, MDPI, vol. 13(13), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1873-:d:158613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.