IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1789-d156815.html
   My bibliography  Save this article

Automatic Adaptation of Multi-Loop Wireless Power Transfer to Variable Coupling between Transmit and Receive Coils

Author

Listed:
  • Kyeongmok Ryu

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Korea)

  • Jinho Jeong

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Korea)

Abstract

In the conventional wireless power transfer (WPT) using magnetic resonance coupling, power transfer efficiency (PTE) exhibits a peak only at a matched distance between transmitter (Tx) and receiver (Rx). That is, it rapidly degrades if the distance deviates from the matched distance. In order to achieve high PTE over a wide range of the distance, automatic range-adaptation technique is proposed in this work by using multi-loop technique and tunable matching circuit with digital capacitors. For automatic range adaptation, the microcontroller unit (MCU) in Rx runs an algorithm to find optimum loop and capacitance for best PTE based on the received power. Tx and Rx are synchronized by using low power Bluetooth wireless communications. Instead of the conventional relays, microelectromechanical system (MEMS) switches with low loss and high isolation are employed to minimize the power dissipation. The entire WPT system automatically maximize PTE with the distance, achieving high PTE of 80.5% at 30 cm and 29.7% at 100 cm.

Suggested Citation

  • Kyeongmok Ryu & Jinho Jeong, 2018. "Automatic Adaptation of Multi-Loop Wireless Power Transfer to Variable Coupling between Transmit and Receive Coils," Energies, MDPI, vol. 11(7), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1789-:d:156815
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youbin Jun & Jedok Kim & Sanguk Lee & Jaewon Rhee & Seongho Woo & Sungryul Huh & Changmin Lee & Seunghun Ryu & Hyunsoo Lee & Seungyoung Ahn, 2024. "Multiple-Split Transmitting Coils for Stable Output Power in Wireless Power Transfer System with Variable Airgaps," Energies, MDPI, vol. 17(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex Burton & Zhong Wang & Dan Song & Sam Tran & Jessica Hanna & Dhrubo Ahmad & Jakob Bakall & David Clausen & Jerry Anderson & Roberto Peralta & Kirtana Sandepudi & Alex Benedetto & Ethan Yang & Diya, 2023. "Fully implanted battery-free high power platform for chronic spinal and muscular functional electrical stimulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    3. Ben Minnaert & Nobby Stevens, 2017. "Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers," Energies, MDPI, vol. 10(9), pages 1-16, September.
    4. Alicia Triviño-Cabrera & José A. Aguado Sánchez, 2018. "A Review on the Fundamentals and Practical Implementation Details of Strongly Coupled Magnetic Resonant Technology for Wireless Power Transfer," Energies, MDPI, vol. 11(10), pages 1-20, October.
    5. Yongming Zhang & Zhe Yan & Li Li & Jiawei Yao, 2018. "A Hybrid Building Power Distribution System in Consideration of Supply and Demand-Side: A Short Overview and a Case Study," Energies, MDPI, vol. 11(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1789-:d:156815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.