IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1758-d156178.html
   My bibliography  Save this article

Study on Impulse Breakdown Characteristics of Internal-Gap Lightning Protection Device Applied to 35 kV Distribution Line

Author

Listed:
  • Zhen Fang

    (State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Changsha 410129, China
    State Grid Hunan Electric Power Company Disaster Prevention and Reduction Center, Changsha 410129, China)

  • Bowen Wang

    (State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Changsha 410129, China
    State Grid Hunan Electric Power Company Disaster Prevention and Reduction Center, Changsha 410129, China)

  • Jiazheng Lu

    (State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Changsha 410129, China
    State Grid Hunan Electric Power Company Disaster Prevention and Reduction Center, Changsha 410129, China)

  • Zhenglong Jiang

    (State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Changsha 410129, China
    State Grid Hunan Electric Power Company Disaster Prevention and Reduction Center, Changsha 410129, China)

Abstract

External environmental factors have no effect on the breakdown performance of the internal gap, leading to the anti-icing and anti-storm features of the internal-gap lightning protection device (ILPD). In this paper, a test platform is created to study the impulse discharge and arc erosion characteristics of the ILPD applied to a 35 kV distribution line. The 50% lightning impulse voltage and discharge stability of the ILPD are experimentally analysed. The results show that the ILPD has good discharge voltage repeatability under multiple impulses. Under a positive lightning impulse, the 50% breakdown voltage of the ILPD is 3.8–11.4% higher than that of the outer-gap lightning protection device (OLPD). A finite element simulation model is created for electric field analysis. The maximum electric field strength of the ILPD is 4.68% lower than that of the OLPD, leading to a higher lightning breakdown voltage. High-speed camera shooting shows that the discharge arc may lead to the erosion of the discharge tube, reducing its insulation performance. A large current impulse test platform is set up for arc energy analysis, which indicates that more than 90% of the energy is absorbed by the varistor during lightning stroke. The quality and leakage current of the discharge tube did not change significantly after testing. Given the current design of varistors, the per unit length energy of arc is less than 4.5 J/mm due to the numerical calculation, which is far less than the experimental arc energy (25.0 J/mm). Therefore, arc erosion will not cause the insulation performance of discharge tube to decrease when using the current varistor design.

Suggested Citation

  • Zhen Fang & Bowen Wang & Jiazheng Lu & Zhenglong Jiang, 2018. "Study on Impulse Breakdown Characteristics of Internal-Gap Lightning Protection Device Applied to 35 kV Distribution Line," Energies, MDPI, vol. 11(7), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1758-:d:156178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiazheng Lu & Pengkang Xie & Jianping Hu & Zhenglong Jiang & Zhen Fang, 2018. "AC Flashover Performance of 10 kV Rod-Plane Air-Gapped Arresters under Rain Conditions," Energies, MDPI, vol. 11(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanis Hamizah Hizamul-Din & Normiza Mohamad Nor, 2021. "Analysis of Zinc Oxide (ZnO) Surge Arrester Connected to Various Ground Electrodes," Energies, MDPI, vol. 14(12), pages 1-19, June.
    2. Kaihua Jiang & Lin Du & Huan Chen & Feng Yang & Yubo Wang, 2019. "Non-Contact Measurement and Polarity Discrimination-Based Identification Method for Direct Lightning Strokes," Energies, MDPI, vol. 12(2), pages 1-17, January.
    3. Flaviu Mihai Frigura-Iliasa & Sorin Musuroi & Ciprian Sorandaru & Doru Vatau, 2019. "Case Study about the Energy Absorption Capacity of Metal Oxide Varistors with Thermal Coupling," Energies, MDPI, vol. 12(3), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanpeng Hao & Yifan Liao & Zhiqiang Kuang & Yijie Sun & Gaofeng Shang & Weixun Zhang & Guiyun Mao & Lin Yang & Fuzeng Zhang & Licheng Li, 2020. "Experimental Investigation on Influence of Shed Parameters on Surface Rainwater Characteristics of Large-Diameter Composite Post Insulators under Rain Conditions," Energies, MDPI, vol. 13(19), pages 1-16, September.
    2. Yifan Liao & Qiao Wang & Lin Yang & Zhiqiang Kuang & Yanpeng Hao & Chuyan Zhang, 2021. "Discharge Behavior and Morphological Characteristics of Suspended Water-Drop on Shed Edge during Rain Flashover of Polluted Large-Diameter Post Insulator," Energies, MDPI, vol. 14(6), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1758-:d:156178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.