IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1339-d148903.html
   My bibliography  Save this article

A Predictive Model for Dry-Growth Icing on Composite Insulators under Natural Conditions

Author

Listed:
  • Xingbo Han

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Shapingba District, Chongqing 400044, China)

  • Xingliang Jiang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Shapingba District, Chongqing 400044, China)

  • Zhongyi Yang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Shapingba District, Chongqing 400044, China)

  • Conglai Bi

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Shapingba District, Chongqing 400044, China)

Abstract

Icing can adversely influence electric power system security. Two main issues are caused by icing: the overload of transmission lines, and the reduction in the insulation ability of the insulators. Most previous research has focused on the flashover characteristics of ice-covered insulators, but research on the icing process of the insulator is seriously lacking. Considering the effect of icing shape, the outer airflow field of an insulator was calculated and the local collision efficiencies of water droplets ( β 1 ) were investigated according to the Lagrange algorithm. The simulation showed that the values of β 1 on the insulator edge and rod are much higher than on the insulator surface, and both were significantly influenced by the wind speed and median volume diameter (MVD) of the water droplets. Based on thermal balance equations, a dynamic dry-growth icing model was established. Using the natural icing conditions of Xuefeng Mountain (China) as an example, validation experiments were conducted on a composite insulator and the climate parameters measured by multi-cylinders were used to model the icing shape and mass. The results indicate that high wind speed and low temperature increase icing rate; the icing was mainly concentrated on the windward side and the greatest horizontal thickness was generally on the insulator edge. The dry-growth model had an average error lower than 25% for icing thickness and an average error lower than 20% for icing mass, which were affected by icing roughness.

Suggested Citation

  • Xingbo Han & Xingliang Jiang & Zhongyi Yang & Conglai Bi, 2018. "A Predictive Model for Dry-Growth Icing on Composite Insulators under Natural Conditions," Energies, MDPI, vol. 11(6), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1339-:d:148903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianlin Hu & Caixin Sun & Xingliang Jiang & Qing Yang & Zhijin Zhang & Lichun Shu, 2011. "Model for Predicting DC Flashover Voltage of Pre-Contaminated and Ice-Covered Long Insulator Strings under Low Air Pressure," Energies, MDPI, vol. 4(4), pages 1-16, April.
    2. Xingliang Jiang & Quanlin Wang & Zhijing Zhang & Jianlin Hu & Qin Hu & Chengzhi Zhu, 2017. "Ion Migration in the Process of Water Freezing under Alternating Electric Field and Its Impact on Insulator Flashover," Energies, MDPI, vol. 10(1), pages 1-17, January.
    3. Jianlin Hu & Xingliang Jiang & Fanghui Yin & Zhijin Zhang, 2015. "DC Flashover Performance of Ice-Covered Composite Insulators with Parallel Air Gaps," Energies, MDPI, vol. 8(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guolin Yang & Yi Liao & Xingliang Jiang & Xiangshuai Han & Jiangyi Ding & Yu Chen & Xingbo Han & Zhijin Zhang, 2022. "Research on Value-Seeking Calculation Method of Icing Environmental Parameters Based on Four Rotating Cylinders Array," Energies, MDPI, vol. 15(19), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangxin Li & Ming Zhou & Yazhou Luo & Gang Wang & Lin Jia, 2018. "Effect of Ice Shedding on Discharge Characteristics of an Ice-Covered Insulator String during AC Flashover," Energies, MDPI, vol. 11(9), pages 1-11, September.
    2. Jingjing Wang & Junhua Wang & Jianwei Shao & Jiangui Li, 2017. "Image Recognition of Icing Thickness on Power Transmission Lines Based on a Least Squares Hough Transform," Energies, MDPI, vol. 10(4), pages 1-15, March.
    3. Jiazheng Lu & Pengkang Xie & Zhenglong Jiang & Zhen Fang & Wei Wu, 2018. "Voltage Distribution and Flashover Performance of 220 kV Composite Insulators under Different Icing Conditions," Energies, MDPI, vol. 11(3), pages 1-13, March.
    4. Xingliang Jiang & Quanlin Wang & Zhijing Zhang & Jianlin Hu & Qin Hu & Chengzhi Zhu, 2017. "Ion Migration in the Process of Water Freezing under Alternating Electric Field and Its Impact on Insulator Flashover," Energies, MDPI, vol. 10(1), pages 1-17, January.
    5. Shanpeng Zhao & Chenrui Zhang & Youpeng Zhang & Sihua Wang, 2019. "Influence of Partial Arc on Electric Field Distribution of Insulator Strings for Electrified Railway Catenary," Energies, MDPI, vol. 12(17), pages 1-16, August.
    6. Jiazheng Lu & Pengkang Xie & Jianping Hu & Zhenglong Jiang & Zhen Fang, 2018. "AC Flashover Performance of 10 kV Rod-Plane Air-Gapped Arresters under Rain Conditions," Energies, MDPI, vol. 11(6), pages 1-11, June.
    7. Jordi-Roger Riba & William Larzelere & Johannes Rickmann, 2018. "Voltage Correction Factors for Air-Insulated Transmission Lines Operating in High-Altitude Regions to Limit Corona Activity: A Review," Energies, MDPI, vol. 11(7), pages 1-14, July.
    8. Guangquan Zhang & Xueqin Zhang & Bo Wang & Yujun Guo & Guoqiang Gao & Guangning Wu, 2022. "Study on the Discharge Characteristics along the Surface and Charge Movement Characteristics of Insulating Media in an Airflow Environment," Energies, MDPI, vol. 15(10), pages 1-19, May.
    9. Yuyao Hu & Sihua Guo & Richang Xian & Xingbo Han & Zhongyi Yang & Ying Wu, 2018. "Flashover Performance and Process of Suspension Insulator Strings Artificially Covered with Snow," Energies, MDPI, vol. 11(11), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1339-:d:148903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.