IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p755-d138236.html
   My bibliography  Save this article

Influence of In Situ Pyrolysis on the Evolution of Pore Structure of Oil Shale

Author

Listed:
  • Zhijun Liu

    (Institute of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China
    School of Mining Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China)

  • Dong Yang

    (Institute of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yaoqing Hu

    (Institute of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China)

  • Junwen Zhang

    (College of Resource and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Jixi Shao

    (Institute of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China)

  • Su Song

    (Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan)

  • Zhiqin Kang

    (Institute of Mining Technology, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

The evolution of pore structure during in situ underground exploitation of oil shale directly affects the diffusion and permeability of pyrolysis products. In this study, on the basis of mineral analysis and thermogravimetric results, in combination with the low-pressure nitrogen adsorption (LPNA) and mercury intrusion porosimetry (MIP) technique, the evolution of pore structure from 23 to 650 °C is quantitatively analyzed by simulating in situ pyrolysis under pressure and temperature conditions. Furthermore, based on the experimental results, we analyze the mechanism of pore structure evolution. The results show the following: (1) The organic matter of Fushun oil shale has a degradation stage in the temperature range of 350–540 °C, and there is no obvious temperature gradient between decomposition of kerogen and the secondary decomposition of bitumen. The thermal response mechanisms of organic matter and minerals are different in each temperature stage, and influence the change of pore structure. (2) Significant changes occur in pore shape at 350 °C, where thermal decomposition of kerogen begins. The ink-bottle pores are dominant when the temperature is less than 350 °C, whereas slit pores dominate when the temperature is greater than 350 °C. (3) The change in pore structure of oil shale is much less significant from 23 to 350 °C. The pore volume, porosity, and specific surface area (SSA) of samples increase rapidly with temperature varying from 350 to 600 °C. The variation of each parameter is dissimilated from 600 to 650 °C: the porosity and pore volume increases with a small gradient from 600 to 650 °C, and SSA decreases significantly. (4) The lithostatic pressure does not cause change in the evolution discipline of the pore structure, but the inhibitory effect on the pore development is significant.

Suggested Citation

  • Zhijun Liu & Dong Yang & Yaoqing Hu & Junwen Zhang & Jixi Shao & Su Song & Zhiqin Kang, 2018. "Influence of In Situ Pyrolysis on the Evolution of Pore Structure of Oil Shale," Energies, MDPI, vol. 11(4), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:755-:d:138236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/755/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/755/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Shaotao & Sun, Youhong & Yang, Qinchuan & Wang, Han & Kang, Shijie & Guo, Wei & Shan, Xuanlong & He, Wentong, 2023. "Product migration and regional reaction characteristics in the autothermic pyrolysis in-situ conversion process of low-permeability Huadian oil shale core," Energy, Elsevier, vol. 283(C).
    2. Xu, Shaotao & Lü, Xiaoshu & Sun, Youhong & Guo, Wei & Li, Qiang & Liu, Lang & Kang, Shijie & Deng, Sunhua, 2023. "Optimization of temperature parameters for the autothermic pyrolysis in-situ conversion process of oil shale," Energy, Elsevier, vol. 264(C).
    3. Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
    4. Huang, Xudong & Kang, Zhiqin & Zhao, Jing & Wang, Guoying & Zhang, Hongge & Yang, Dong, 2023. "Experimental investigation on micro-fracture evolution and fracture permeability of oil shale heated by water vapor," Energy, Elsevier, vol. 277(C).
    5. Lei Wang & Dong Yang & Xiang Li & Jing Zhao & Guoying Wang & Yangsheng Zhao, 2018. "Macro and Meso Characteristics of In-Situ Oil Shale Pyrolysis Using Superheated Steam," Energies, MDPI, vol. 11(9), pages 1-15, August.
    6. Zhou, Yinbo & Li, Hansheng & Huang, Jilei & Zhang, Ruilin & Wang, Shijie & Hong, Yidu & Yang, Yongliang, 2021. "Influence of coal deformation on the Knudsen number of gas flow in coal seams," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:755-:d:138236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.