IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p703-d137307.html
   My bibliography  Save this article

An Efficient Hybrid Filter-Based Phase-Locked Loop under Adverse Grid Conditions

Author

Listed:
  • Nanmu Hui

    (School of Information Science & Engineering, Northeastern University, Shenyang 110819, Liaoning, China)

  • Dazhi Wang

    (School of Information Science & Engineering, Northeastern University, Shenyang 110819, Liaoning, China)

  • Yunlu Li

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, Liaoning, China)

Abstract

Synchronous-reference-frame phase-locked loop (SRF-PLL) is widely used in grid synchronization applications. However, under unbalanced, distorted and DC offset mixed grid conditions, its performance tends to worsen. In order to improve the filtering capability of SRF-PLL, a modified three-order generalized integrator (MTOGI) with DC offset rejection capability based on conventional three order generalized integrator (TOGI) and an enhanced delayed signal cancellation (EDSC) are proposed, then dual modified TOGI (DMTOGI) filtering stage is designed and incorporated into the SRF-PLL control loop with EDSC to form a new hybrid filter-based PLL. The proposed PLL can reject the fundamental frequency negative sequence (FFNS) component, DC offset component, and the rest of harmonic components in SRF-PLL input three-phase voltages at the same time with a simple complexity. The proposed PLL in this paper has a faster transient response due to the EDSC reducing the number of DSC operators. A small-signal model of the proposed PLL is derived. The stability is analyzed and parameter design guidelines are given. Experimental results are included to validate the effectiveness and robustness of the proposed PLL.

Suggested Citation

  • Nanmu Hui & Dazhi Wang & Yunlu Li, 2018. "An Efficient Hybrid Filter-Based Phase-Locked Loop under Adverse Grid Conditions," Energies, MDPI, vol. 11(4), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:703-:d:137307
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Luo & Jianguo Jiang & He Liu, 2017. "Frequency-Adaptive Modified Comb-Filter-Based Phase-Locked Loop for a Doubly-Fed Adjustable-Speed Pumped-Storage Hydropower Plant under Distorted Grid Conditions," Energies, MDPI, vol. 10(6), pages 1-13, May.
    2. Mostafa Ahmadzadeh & Saeedollah Mortazavi & Mohsen Saniei, 2018. "Applying the Taguchi Method for Investigating the Phase-Locked Loop Dynamics Affected by Hybrid Storage System Parameters," Energies, MDPI, vol. 11(1), pages 1-20, January.
    3. Yijia Cao & Jiaqi Yu & Yong Xu & Yong Li & Jingrong Yu, 2017. "An Efficient Phase-Locked Loop for Distorted Three-Phase Systems," Energies, MDPI, vol. 10(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianfranco Chicco & Andrea Mazza, 2019. "100 Years of Symmetrical Components," Energies, MDPI, vol. 12(3), pages 1-20, January.
    2. Tie Li & Yunlu Li & Junyou Yang & Weichun Ge & Bo Hu, 2019. "A Modified DSC-Based Grid Synchronization Method for a High Renewable Penetrated Power System Under Distorted Voltage Conditions," Energies, MDPI, vol. 12(21), pages 1-19, October.
    3. Yuxia Jiang & Yonggang Li & Yanjun Tian & Luo Wang, 2018. "Phase-Locked Loop Research of Grid-Connected Inverter Based on Impedance Analysis," Energies, MDPI, vol. 11(11), pages 1-21, November.
    4. Yunlu Li & Junyou Yang & Haixin Wang & Weichun Ge & Yiming Ma, 2018. "A Hybrid Filtering Technique-Based PLL Targeting Fast and Robust Tracking Performance under Distorted Grid Conditions," Energies, MDPI, vol. 11(4), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunlu Li & Junyou Yang & Haixin Wang & Weichun Ge & Yiming Ma, 2018. "A Hybrid Filtering Technique-Based PLL Targeting Fast and Robust Tracking Performance under Distorted Grid Conditions," Energies, MDPI, vol. 11(4), pages 1-18, April.
    2. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    3. Gilberto A. Herrejón-Pintor & Enrique Melgoza-Vázquez & Jose de Jesús Chávez, 2022. "A Modified SOGI-PLL with Adjustable Refiltering for Improved Stability and Reduced Response Time," Energies, MDPI, vol. 15(12), pages 1-20, June.
    4. Fei Zhao & Fanyu Kong & Yisong Zhou & Bin Xia & Yuxing Bai, 2019. "Optimization Design of the Impeller Based on Orthogonal Test in an Ultra-Low Specific Speed Magnetic Drive Pump," Energies, MDPI, vol. 12(24), pages 1-21, December.
    5. Abdullah Alassaf & Ibrahim Alsaleh & Ayoob Alateeq & Hamoud Alafnan, 2023. "Grid-Following Inverter-Based Resource: Numerical State–Space Modeling," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    6. Mohammad A. Bany Issa & Zaid A. Al Muala & Pastora M. Bello Bugallo, 2023. "Grid-Connected Renewable Energy Sources: A New Approach for Phase-Locked Loop with DC-Offset Removal," Sustainability, MDPI, vol. 15(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:703-:d:137307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.