IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p669-d136543.html
   My bibliography  Save this article

Comparative Study of Energy Performance between Chip and Inlet Temperature-Aware Workload Allocation in Air-Cooled Data Center

Author

Listed:
  • Yan Bai

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Lijun Gu

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Xiao Qi

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

Improving the energy efficiency of data center has become a research focus in recent years. Previous works commonly adopted the inlet temperature constraint to optimize the thermal environment in the data center. However, the inlet temperature-aware method cannot prevent the servers from over-cooling. To cope with this issue, we propose a thermal-aware workload allocation strategy with respect to the chip temperature constraint. In this paper, we conducted a comparative evaluation of the performance between the chip and inlet temperature-aware workload allocation strategies. The workload allocation strategies adopt a POD-based heat recirculation model to characterize the thermal environment in data center. The contribution of the temperature-dependent leakage power to server power consumption is also considered. We adopted a sample data center under constant-flow and variable-flow cooling air supply to evaluate the performance of these two different workload allocation strategies. The comparison results show that the chip temperature-aware workload allocation strategy prevents the servers from over-cooling and significantly improves the energy efficiency of data center, especially for the case of variable-flow cooling air supply.

Suggested Citation

  • Yan Bai & Lijun Gu & Xiao Qi, 2018. "Comparative Study of Energy Performance between Chip and Inlet Temperature-Aware Workload Allocation in Air-Cooled Data Center," Energies, MDPI, vol. 11(3), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:669-:d:136543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Habibi Khalaj, Ali & Scherer, Thomas & Siriwardana, Jayantha & Halgamuge, Saman K., 2015. "Multi-objective efficiency enhancement using workload spreading in an operational data center," Applied Energy, Elsevier, vol. 138(C), pages 432-444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeliang Qiu & Congfeng Jiang & Yumei Wang & Dongyang Ou & Youhuizi Li & Jian Wan, 2019. "Energy Aware Virtual Machine Scheduling in Data Centers," Energies, MDPI, vol. 12(4), pages 1-21, February.
    2. Jin, Chaoqiang & Bai, Xuelian & Yang, Chao & Mao, Wangxin & Xu, Xin, 2020. "A review of power consumption models of servers in data centers," Applied Energy, Elsevier, vol. 265(C).
    3. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Down, Douglas G. & Puri, Ishwar K., 2021. "Energy, exergy and computing efficiency based data center workload and cooling management," Applied Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fengjuan & Lv, Chengwei & Xu, Jiuping, 2023. "Carbon awareness oriented data center location and configuration: An integrated optimization method," Energy, Elsevier, vol. 278(C).
    2. Silva-Llanca, Luis & Ortega, Alfonso & Fouladi, Kamran & del Valle, Marcelo & Sundaralingam, Vikneshan, 2018. "Determining wasted energy in the airside of a perimeter-cooled data center via direct computation of the Exergy Destruction," Applied Energy, Elsevier, vol. 213(C), pages 235-246.
    3. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    4. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    5. Wang, Wei & Abdolrashidi, Amirali & Yu, Nanpeng & Wong, Daniel, 2019. "Frequency regulation service provision in data center with computational flexibility," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Yan Bai & Lijun Gu, 2017. "Chip Temperature-Based Workload Allocation for Holistic Power Minimization in Air-Cooled Data Center," Energies, MDPI, vol. 10(12), pages 1-19, December.
    7. Wang, Fengjuan & Lv, Chengwei, 2024. "A data center expansion scheme considering net-zero carbon operation: Optimization of geographical location, on-site renewable utilization and green certificate purchase," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    8. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    9. Habibi Khalaj, Ali & Halgamuge, Saman K., 2017. "A Review on efficient thermal management of air- and liquid-cooled data centers: From chip to the cooling system," Applied Energy, Elsevier, vol. 205(C), pages 1165-1188.
    10. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    11. Uddin, Mueen & Darabidarabkhani, Yasaman & Shah, Asadullah & Memon, Jamshed, 2015. "Evaluating power efficient algorithms for efficiency and carbon emissions in cloud data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1553-1563.
    12. Zhang, Shanhong & Yu, Guanghui & Guo, Yu & Wang, Yang, 2023. "Modelling development and optimization on hydrodynamics and energy utilization of fish culture tank based on computational fluid dynamics and machine learning," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:669-:d:136543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.