IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p441-d132130.html
   My bibliography  Save this article

A Novel Stochastic-Programming-Based Energy Management System to Promote Self-Consumption in Industrial Processes

Author

Listed:
  • Jorge Barrientos

    (SISTEMIC, Engineering Faculty, Universidad de Antioquia UDEA, Calle 70 No 52-21, 1226 Medellín, Colombia)

  • José David López

    (SISTEMIC, Engineering Faculty, Universidad de Antioquia UDEA, Calle 70 No 52-21, 1226 Medellín, Colombia)

  • Felipe Valencia

    (Energy Center, Faculty of Mathematical and Physical Sciences, University of Chile, 8370451 Santiago, Chile)

Abstract

The introduction of non-conventional energy sources (NCES) to industrial processes is a viable alternative to reducing the energy consumed from the grid. However, a robust coordination of the local energy resources with the power imported from the distribution grid is still an open issue, especially in countries that do not allow selling energy surpluses to the main grid. In this paper, we propose a stochastic-programming-based energy management system (EMS) focused on self-consumption that provides robustness to both sudden NCES or load variations, while preventing power injection to the main grid. The approach is based on a finite number of scenarios that combines a deterministic structure based on spectral analysis and a stochastic model that represents variability. The parameters to generate these scenarios are updated when new information arrives. We tested the proposed approach with data from a copper extraction mining process. It was compared to a traditional EMS with perfect prediction, i.e., a best case scenario. Test results show that the proposed EMS is comparable to the EMS with perfect prediction in terms of energy imported from the grid (slightly higher), but with less power changes in the distribution side and enhanced dynamic response to transients of wind power and load. This improvement is achieved with a non-significant computational time overload.

Suggested Citation

  • Jorge Barrientos & José David López & Felipe Valencia, 2018. "A Novel Stochastic-Programming-Based Energy Management System to Promote Self-Consumption in Industrial Processes," Energies, MDPI, vol. 11(2), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:441-:d:132130
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fais, Birgit & Sabio, Nagore & Strachan, Neil, 2016. "The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets," Applied Energy, Elsevier, vol. 162(C), pages 699-712.
    2. McManus, M.C., 2012. "Environmental consequences of the use of batteries in low carbon systems: The impact of battery production," Applied Energy, Elsevier, vol. 93(C), pages 288-295.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Hongwen & Xiong, Rui & Zhao, Kai & Liu, Zhentong, 2013. "Energy management strategy research on a hybrid power system by hardware-in-loop experiments," Applied Energy, Elsevier, vol. 112(C), pages 1311-1317.
    2. Peter Nagovnak & Maedeh Rahnama Mobarakeh & Christian Diendorfer & Gregor Thenius & Hans Böhm & Thomas Kienberger, 2024. "Cost-Driven Assessment of Technologies’ Potential to Reach Climate Neutrality in Energy-Intensive Industries," Energies, MDPI, vol. 17(5), pages 1-34, February.
    3. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    4. Fabio Massaro & Maria Luisa Di Silvestre & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems," Energies, MDPI, vol. 17(17), pages 1-31, September.
    5. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    6. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Jinpeng Liu & Li Wang & Mohan Qiu & Jiang Zhu, 2016. "Promotion Potentiality and Optimal Strategies Analysis of Provincial Energy Efficiency in China," Sustainability, MDPI, vol. 8(8), pages 1-17, August.
    8. Alla Toktarova & Lisa Göransson & Filip Johnsson, 2021. "Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition," Energies, MDPI, vol. 14(24), pages 1-21, December.
    9. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    10. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Pan, Zehua & Liu, Qinglin & Zhang, Lan & Zhou, Juan & Zhang, Caizhi & Chan, Siew Hwa, 2017. "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied Energy, Elsevier, vol. 191(C), pages 559-567.
    12. Sonja Sechi & Sara Giarola & Pierluigi Leone, 2022. "Taxonomy for Industrial Cluster Decarbonization: An Analysis for the Italian Hard-to-Abate Industry," Energies, MDPI, vol. 15(22), pages 1-31, November.
    13. Tehmina Zahid & Noman Arshed & Mubbasher Munir & Kamran Hameed, 2021. "Role of energy consumption preferences on human development: a study of SAARC region," Economic Change and Restructuring, Springer, vol. 54(1), pages 121-144, February.
    14. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).
    15. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2023. "Energy Indicators for Enabling Energy Transition in Industry," Energies, MDPI, vol. 16(2), pages 1-18, January.
    16. Hosseini, Keyvan & Stefaniec, Agnieszka, 2019. "Efficiency assessment of Iran's petroleum refining industry in the presence of unprofitable output: A dynamic two-stage slacks-based measure," Energy, Elsevier, vol. 189(C).
    17. Ge, Yongbo & Zhu, Yuexiao, 2022. "Boosting green recovery: Green credit policy in heavily polluted industries and stock price crash risk," Resources Policy, Elsevier, vol. 79(C).
    18. Christian Aichberger & Gerfried Jungmeier, 2020. "Environmental Life Cycle Impacts of Automotive Batteries Based on a Literature Review," Energies, MDPI, vol. 13(23), pages 1-27, December.
    19. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
    20. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:441-:d:132130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.