IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p388-d130676.html
   My bibliography  Save this article

Determination of the Structural Characteristics of Microalgal Cells Walls under the Influence of Turbulent Mixing Energy in Open Raceway Ponds

Author

Listed:
  • Haider Ali

    (School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea)

  • Taqi Ahmad Cheema

    (Department of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23460, Pakistan)

  • Cheol Woo Park

    (School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Korea)

Abstract

Turbulent flow mixing is essential in optimizing microalgal cultivation in raceway ponds. Microalgal cells are however highly sensitive to hydrodynamic stresses produced by turbulent mixing because of their small size. The mechanical properties (wall deformation and von Misses stress) of the microalgal cell wall structure under the influence of turbulent mixing are yet to be explored. High turbulence magnitudes damage microalgal cell walls by adversely affecting their mechanical properties which consequently destroy the microalgal cells and reduce the biofuel production. Therefore, such a study is required to improve the biofuel productivity of microalgal cells before their cell wall damage in raceway pond. This study developed a novel fluid–structure interaction (FSI)-based numerical model to investigate the effects of turbulent mixing on the cell wall damage of microalgal cells in raceway ponds. The study investigated microalgal cell wall damage at four different locations in a raceway pond in consideration of the effects of pond’s hydrodynamic and geometric properties. An experiment was conducted with a laboratory-scale raceway pond to compare and validate the numerical results by using time-dependent water velocities. Microalgal cell wall shear stress, cell wall deformation, and von Misses stress in the raceway pond were investigated by considering the effects of aspect ratios, water depths, and paddle wheel rotational speeds. Results showed that the proposed numerical model can be used as a prerequisite method for the selection of appropriate turbulent mixing. Microalgal cell wall damage is high in shallow and narrow raceway ponds with high paddle rotational speeds.

Suggested Citation

  • Haider Ali & Taqi Ahmad Cheema & Cheol Woo Park, 2018. "Determination of the Structural Characteristics of Microalgal Cells Walls under the Influence of Turbulent Mixing Energy in Open Raceway Ponds," Energies, MDPI, vol. 11(2), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:388-:d:130676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/388/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/388/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Haider & Park, Cheol Woo, 2017. "Numerical multiphase modeling of CO2 absorption and desorption in microalgal raceway ponds to improve their carbonation efficiency," Energy, Elsevier, vol. 127(C), pages 358-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haider Ali & Dongda Zhang & Jonathan L. Wagner & Cheol Woo Park, 2018. "Two-Phase Flow Modeling of Solid Dissolution in Liquid for Nutrient Mixing Improvement in Algal Raceway Ponds," Energies, MDPI, vol. 11(4), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haider Ali & Dongda Zhang & Jonathan L. Wagner & Cheol Woo Park, 2018. "Two-Phase Flow Modeling of Solid Dissolution in Liquid for Nutrient Mixing Improvement in Algal Raceway Ponds," Energies, MDPI, vol. 11(4), pages 1-21, April.
    2. Ousmane Wane & Julián A. Ramírez Ceballos & Francisco Ferrera-Cobos & Ana A. Navarro & Rita X. Valenzuela & Luis F. Zarzalejo, 2022. "Comparative Analysis of Photosynthetically Active Radiation Models Based on Radiometric Attributes in Mainland Spain," Land, MDPI, vol. 11(10), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:388-:d:130676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.